# Reducing Acidification in Endangered Atlantic Salmon Habitat

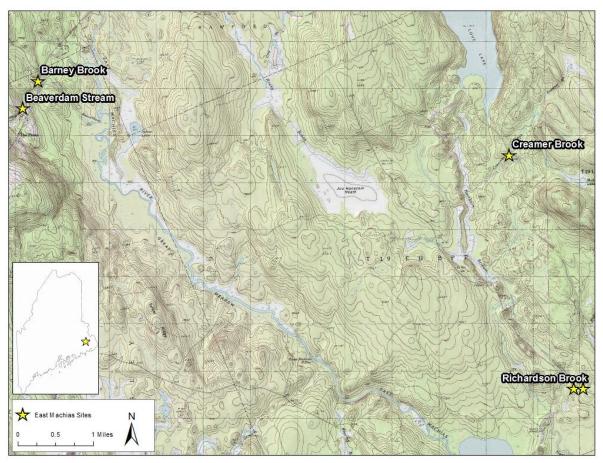
# **First Year of Clam Shells**

February 2020



Contact: Emily Zimmermann, Biologist Phone: (207) 446-1003



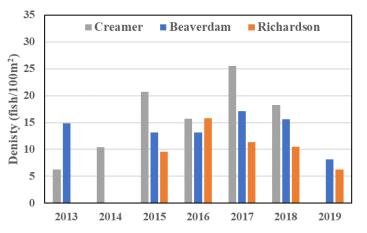

MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station | Augusta, Maine 04333-0017 www.maine.gov/dep

# Introduction

Despite restored access to historic Atlantic salmon (Salmo salar) habitat in eastern Maine, population sizes have remained low (USASAC 2019). Most Downeast rivers and streams have been identified as acidic (pH <6.5), with headwaters chronically acidic and main stems episodically acidic (Haines et al. 1990; Whiting and Otto 2008). Loss of fish populations due to acidification of surface waters has been well documented in the North Atlantic region (as reviewed by Clair and Hindar 2005; Dennis and Clair 2012). In addition, numerous studies have demonstrated that episodic exposure to low pH can have detrimental, sub-lethal impacts when coinciding with key salmon life stages during snow melt and spring runoff (e.g., Kroglund et al. 2008; Lacroix and Knox 2005; as reviewed by McCormick et al. 1998). Adding lime to acidic waters, through application of agricultural lime or lime slurry, has increased salmon populations in Scandinavia and Nova Scotia (as reviewed by Clair and Hindar 2005; Halfyard 2007; Hesthagen et al. 2011), and has been a recommended restoration action for Maine's acidic rivers and streams (NRC 2004). A 2009 Project SHARE pilot study investigating the efficacy of using clam shells to lime small streams suggested a trend towards improved habitat quality (Whiting 2014). For a more detailed project background, see Zimmermann (2018). To further investigate this mitigation method, the Downeast Salmon Federation (DSF) started a multi-year liming project in the East Machias River watershed in 2019. Clam shells are being spread along the stream bottom, as well as along the banks to capture high flow events (i.e., rainfall and snowmelt, when episodic acidity is expected). The project goal is to increase juvenile salmon abundance by application of clam shells to achieve a target pH, and to evaluate changes in the macroinvertebrate community. From 2017 through summer 2019, baseline data were collected (see Zimmermann 2019). In 2019, one dose of clam shells (10.6 metric tons) was spread along a treatment reach in Richardson Brook incrementally from July 25 through October 8. This report investigates any impacts from the first dose of shells on water quality.

# Methods

Four tributary streams to the East Machias River were monitored (Fig. 1 and Appendix I Table 1). The East Machias River watershed is typical of coastal eastern Maine, with extensive wetlands resulting in colored waters high in organic materials and low pH, with high summer temperatures (Project SHARE-USFWS 2009). The existing salmon population in the East Machias River system is low (median large parr density 13.1 per habitat unit, 100m<sup>2</sup>), with 61 redds observed in 2019 and an estimated  $1049 \pm 186$  part exiting the system in 2018 (DSF data; USASAC 2019). In 2018, preliminary estimates show only 15 adults returned (Department of Marine Resources, MDMR). Richardson Brook and Creamer Brook are both stocked by DSF, and the average large parr density observed during fall electrofishing is 11 parr/100m<sup>2</sup> and 16 parr/100m<sup>2</sup> respectively (Fig. 2, MDMR data). The bedrock geology in the study area is predominantly marine sandstone and slate with some volcanic rocks, especially around Creamer Brook (see Appendix I Table 2 for stream characteristics; MGS 2017). Beaverdam Stream is stocked with 9-month old salmon parr by DSF and it has some of the most productive salmon habitat in the watershed, with an average of 14 parr/100m<sup>2</sup> (Fig. 2, MDMR data). Continuous monitoring devices provided water quality data every half hour that was supplemented by bimonthly grab samples (Zimmermann 2018). Macroinvertebrate samples were collected at Beaverdam Stream and Creamer Brook using rock bags following the MEDEP protocol (2014) and by DSF staff at three locations using rock bags, following USEPA's Rapid Bioassessment



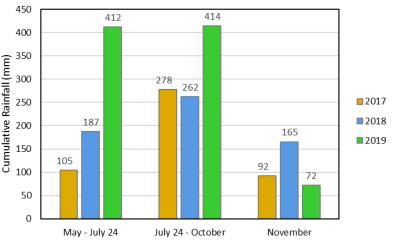

**Figure 1.** Map of the five study sites on four tributaries to the East Machias River. On Richardson Brook, samples were collected below the road crossing and 360m above the old upstream location, to remain above the shell treatment reach.

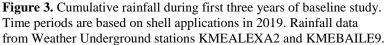
Protocol metrics (Barbour et al. 1999).

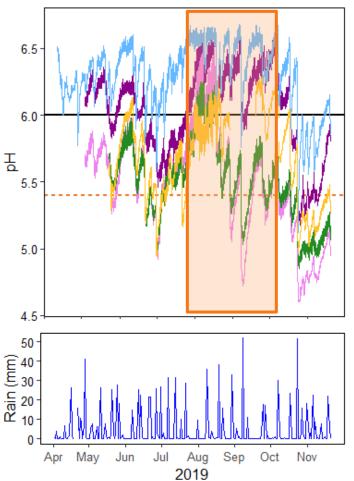
#### **Statistical Analysis**

Data were analyzed using R 3.5.2 (R Core Team 2018). Plots were created using *ggplot2* (Wickham 2009). All data are presented as mean  $\pm$  standard deviation, unless otherwise stated. Non-parametric Kruskal-Wallis tests were used to compare grab sample results between sites and years, due to the small sample sizes, with Dunn's multiple comparison post-hoc tests. In 2019, 4.4% of pH data and




**Figure 2.** Salmon density in three of the study streams from 2013-2019. Data from MDMR electrofishing surveys. No data were collected in Creamer Brook in 2019 due to high flows.


2% of specific conductance data were rejected due to quality control issues. 0.2% of dissolved oxygen data were rejected due to equipment malfunction.


## **Results and Discussion**

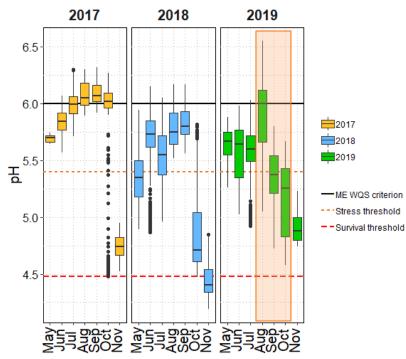
Weather

Northern and Eastern Maine experienced a cold, record-setting wet spring in 2019, following a winter with deep and persistent snow pack (NOAA 2019a). The summer had above average temperatures and precipitation, following three dry, hot summers (Fig. 3, NOAA 2019b, Weather Underground 2019). In 2019, around 205 ± 86 mm more rainfall fell from May through July than in the two prior years, as smaller but more frequent storms (Figs. 3 and 4). November had the least rain in 2019 compared with the two prior years (Fig. 3).








- Richardson Brook B
   Richardson Brook 09
   Beaverdam Stream
   Barney Brook
   Creamer Brook
   ME WQS criterion
- ---Stress threshold

**Figure 4.** Continuous pH at the five study sites in 2019 and local rainfall. Rainfall data from Weather Underground station s KMEALEXA2 and KMEBAILE9. Orange box represents shell additions to Richardson Brook July 25 – Oct. 8. Stress threshold from Stanley and Trial 1995 and Haines et al. 1990.

# <u>pH</u>

Salmon prefer pH values that are circumneutral (i.e., higher), rather than acidic (i.e., lower). For the three years  $2017-2019, 80 \pm$ 5% of pH values remained above the threshold of 5.4. where no adverse impacts to salmon are expected (Fig. 4; Appendix II Tables 1 and 4; Haines et al. 1990; Stanley and Trial 1995. Zimmermann 2019).

pH remained above the state

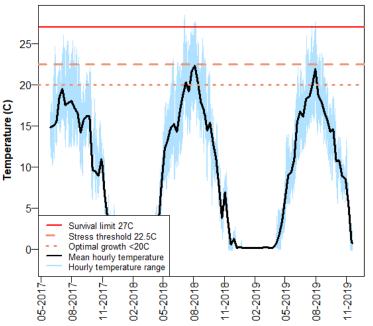


**Figure 5.** Monthly pH at the downstream Richardson Brook site (Rich-B). Each box represents the interquartile range, with the horizontal line representing the median, and whiskers extending to the minimum and maximum values observed, except where values are considered statistical outliers (dots). Stress threshold from Stanley and Trial 1995 and Haines et al. 1990. Survival threshold from Potter 1982. Orange box represents shell additions to Richardson Brook July 25 – Oct. 8, 2019.

highest pH values, and the fastest recovery following rain events (Fig. 4).

At Richardson Brook's downstream site, pH values were similar between 2018 and 2019 prior to the addition of shells (Fig. 5 and Appendix II Table 6). Following the addition of one complete dose of shells, the mean pH in November was higher by 0.4 units compared to the prior two years (Fig. 5), however pH was also higher at the untreated upstream Richardson Brook site (Appendix II Table 6). In all three years, the downstream site experienced larger diel fluctuations and lower autumn pH values than the upstream site (Zimmermann 2019). Therefore, the higher pH observed in November 2019 was not due to the shells, but likely due to the lower amount of rainfall that month compared with the prior two years (Fig. 3). For all three years, pH values at Richardson Brook were below 5.4 for all of November, indicating that sub-lethal stress is likely still occurring despite one dose of shells being added to the study stream (Baker et al. 1996; Henriksen et al. 1984; Lacroix and Knox 2005; Magee et al. 2003).

#### Stream Temperature

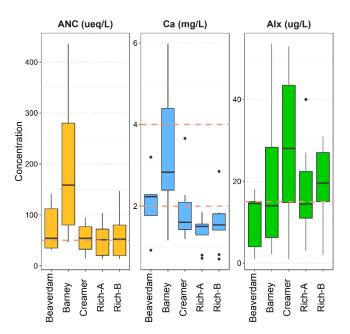

Salmon prefer cold waters. For the three years 2017-2019, temperature remained below the threshold for optimal growth of 20°C for most of the sampling period ( $87 \pm 3.4\%$ ; Fig. 6; Appendix II Table 1; USEPA 1986). The stress threshold of 22.5°C was exceeded only  $3.5 \pm$ 1.9% of the time (Elliott and Hurley 1997; Stanley and Trial 1995), USEPA's short-term maxima for survival of 23°C was exceeded  $2.6 \pm 1.6\%$  of the time (USEPA 1986), and the maximum temperature for salmon survival of 27°C was exceeded only  $0.1 \pm 0.1\%$  of the time (Stanley and Trial 1995; Appendix II Table 4). Maximum temperatures occurred primarily in July and

water quality criterion of 6.0 for  $44 \pm 9\%$  of the period 2017-2019 (Appendix II Table 4 for 2019 data; 38 MRS Section 464.4.A.5). At all sites, pH was highest during the driest year (2017) when groundwater had a stronger influence on the study streams (e.g., Fig. 5). In 2019, rainfalldriven pH depression occurred primarily after rain events > 20mm. The frequency of these events (every  $9.7 \pm 6.3$  days; Fig. 4) often prevented full recovery to pre-storm pH levels, resulting in lower pH levels as the season progressed (Zimmermann 2019). However, pH never fell below the survival threshold of 4.48 in 2019 (Potter 1982). As seen in prior years, Barney Brook and Beaverdam Stream had the

August. Despite a cold spring, 2019 was only slightly cooler than 2018 (3% >22.5°C in 2019 vs. 5.6% in 2018; Zimmermann 2019). Stressful temperatures lasted half as long in 2019, with maximum durations around 1.6 days. Nightly temperature refugia may allow recovery from thermal stress, however sub-lethal stress is likely occurring during these events.

#### Dissolved Oxygen (DO)

Salmon prefer well oxygenated waters. For the three years 2017-2019, DO levels were within a healthy range for fish and aquatic life in addition to the preferred range for salmon of >6-7 mg/L for most (>90%) of the baseline period (Appendix II Tables 1 and 4; Stanley and Trial 1995; 38 MRS Section 465.2.B; USEPA 1986; Zimmermann 2019). Low DO only




**Figure 6.** Mean hourly temperature across all study sites 2017-2019. Optimal growth limit from USEPA 1986. Stress and survival thresholds from Elliott and Hurley 1997 and Stanley and Trial 1995.

occurred during extreme low flows in 2017 and 2018 (Zimmermann 2019). In 2019, DO concentrations only fell below the Maine Water Quality Standard of 7 mg/L occurred at the upstream Richardson Brook site during the hottest, driest part of the summer and lasted for on average 8 hours, with a maximum of 15 hours (38 MRS Section 465.2.B). In 2019, DO concentrations remained above USEPA's threshold for acute impairment of 5 mg/L (USEPA 1986). DO was probably not a significant stressor in 2019.

#### Acid Neutralization Capacity (ANC)

Streams with higher ANC have higher buffering capacity against changes in acidity. For the three years 2017-2019, summer baseflow ANC remained above the threshold of acid sensitivity of 50 µeq/L (Fig. 7; Appendix II Table 2; Driscoll et al. 2001). However, as in 2018, ANC was below the Norwegian 20-30 µeq/L critical limit for salmon in samples following a spring rain-on-snow event (Baker et al. 1990; Lien et al. 1996; Kroglund et al. 2002; Zimmermann 2019). There were no significant differences between the upstream and downstream Richardson Brook sites (neither in 2019 nor across all three years of autumn sampling events), indicating the addition of clam shells had no significant impact on ANC (Appendix II, Table 6). No samples were above USEPA's recommended AWQC of 20 mg/L alkalinity, however this threshold doesn't apply where values are naturally lower (USEPA 1986). Barney Brook had the highest ANC (Fig. 7; chi-squared = 10.91, df = 4, p = 0.028), however it was only statistically higher than the upper Richardson Brook site (z = 2.94, p = 0.033). Relatively low ANC values indicate a deficit of buffering materials in the watershed due to thin soils (Potter 1982), allowing volatile swings in pH after rain inputs (Fig. 4) and increasing the potential for salmon mortality (MacAvoy and Bulger 1995). Due to low buffering capacity, any impacts from liming mitigation will be reversed quickly if mitigation ceases (Halfyard 2007).



**Figure 7.** Acid neutralization capacity (ANC), calcium (Ca) and exchangeable aluminum (Alx) for 2017-2019. n = 9, except n = 7 for Creamer Brook and n = 6 for Beaverdam Stream. Each box represents the interquartile range, with the horizontal line representing the median, and whiskers extending to the minimum and maximum values observed, except where values are considered statistical outliers (dots). ANC stress threshold of <50 µeq/L from Driscoll et al. 2001. Calcium stress thresholds of <4 mg/L from M. Whiting (pers. comm.) and <2 mg/L from Baker et al. 1990 and Baldigo and Murdoch 2007. Alx stress threshold of >15 µg/L from EIFAC as cited in Dennis and Clair 2012.

#### Calcium

Higher calcium values enable more growth in fish. For the three years 2017-2019, calcium was below the survival threshold of 2 mg/L at all sites for most (69%) of the sample events and remained below 2 mg/L at every sample at the upstream Richardson Brook site (Fig. 7; Appendix II Tables 2 and 4; Baker et al. 1990; Baldigo and Murdoch 2007). Barney Brook had the highest calcium levels (chi-squared = 10.503, df = 4, p = 0.033) and was the only site with samples above the suggested threshold of 4 mg/L to prevent deformities (M. Whiting pers. comm.). The anticipated increase in calcium following the addition of clam shells was not observed at the downstream Richardson Brook site, compared with the upstream control site, with no significant differences between the two sites (neither in 2019 nor across all three years of autumn sampling events; Appendix II Table 6). In all three years, calcium minima coincided with low pH, high aluminum, and low ANC. The capacity of calcium to buffer against the detrimental impacts of exchangeable aluminum (Alx) decreases when calcium concentrations are below 1 mg/L at pH 6.5, and around 2 mg/L Ca when pH is <6.5 (Baldigo and Murdoch 2007; MacDonald et al. 1980, Wood et al. 1990). It is expected that some buffering of Alx is occurring in the study streams during summer baseflow, when calcium values are highest, but not during spring rain-on-snow events (Baker et al. 1990; Wood et al. 1990).

#### Aluminum

Average total aluminum per stream was similar to the two prior years, ranging from 149 to 232  $\mu$ g/L in 2019 (Zimmermann 2019). Total aluminum was well below the Maine AWQC maximum of 750  $\mu$ g/L which is based on a pH of 6.5-9 and dissolved organic carbon (DOC) <5 mg/L, significantly different from values observed in the study streams (Appendix II Tables 2 and 3; MDEP CMR Chapter 584). In 2019, total aluminum was mostly above USEPA's site-specific maximum criteria (CMC) which ranged from 14-990  $\mu$ g/L depending on DOC, total hardness, and pH at each sample site (USEPA 2018). Aluminum exceedances seem to be linked to rainfall, as exceedances primarily occurred in 2018 following rain events, and there were more exceedances during rainy 2019. Organic aluminum was the dominant species, likely due to DOC concentrations, which can reduce the impact of aluminum toxicity (Appendix II Table 3; Lacroix

and Kan 1986). Exchangeable aluminum (Alx) represented  $7.7 \pm 5.6\%$  of aluminum species per sample, ranging from 0% to 17.9%, similar to observations in Nova Scotia (Lacroix and Kan 1986).

For protection of aquatic life, including macroinvertebrates, the European Inland Fisheries Advisory Commission (EIFAC) recommends that Alx should not exceed 15 µg/L at pH 5.0-6.0, even for short durations (Howells et al. 1990 as cited in Dennis and Clair 2012; Kroglund and Staurnes 1999; McCormick et al. 2009). All streams except for Beaverdam and Barney exceeded this criterion during summer baseflow when pH was relatively high (between 5.95 and 6.19), and therefore aluminum solubility (and toxicity) is reduced (Fig. 7; Appendix II Tables 3 and 4; Dennis and Clair 2012; Driscoll et al. 2001). Alx was highest in streams with the lowest buffering capacity and lowest pH. There were no significant differences between the upstream and downstream Richardson Brook sites (neither in 2019 nor across all three years of autumn sampling events), indicating the addition of clam shells had no significant impact on Alx (Appendix II Table 6). The abundance of acid-sensitive species decreases when Alx is  $>72 \mu g/L$ and pH is  $\leq$ 5 (Driscoll et al. 2001), conditions not observed in the discrete samples collected in the three years of the study. The risk of salmon mortality in the study streams due to high Alx concentrations is unlikely (Baldigo and Murdoch 2007; Haines et al. 1990), however sub-lethal stress may decrease smolt tolerance to saltwater (Kroglund and Staurnes 1999; McCormick et al. 2009; Monette et al. 2008; Staurnes et al. 1995). Recovery from low pH/high Alx events can take up to 3 days in neutral waters (Kroglund and Staurnes 1999) and up to 3 weeks for early life stages (Wood et al. 1990). Based on the three years of this study, reduced salmon populations are expected at all streams except for Barney Brook due to Alx and pH (Kroglund et al. 2002).

#### Dissolved Organic Carbon (DOC)

Downeast streams, including those studied here, are naturally highly colored, with relatively high organic content (and therefore high DOC) due to wetlands and coniferous forests (Haines et al. 1990). For the three years 2017-2019, DOC ranged from 3.4 to 19 mg/L, with an average of  $11.0 \pm 3.6$  mg/L (Appendix II Table 2). There were no significant differences between years across all sites, and no difference between the upstream and downstream Richardson Brook sites (neither in 2019 nor across all three years of autumn sampling events). A positive correlation between DOC and pH was observed in the spring and fall (r = 3.19, R<sup>2</sup> = 0.64, p = 0.006), indicating that low pH correlates with low DOC. This suggests that seasonal pH depressions are not driven by organic acids, but by anthropogenic acidification such as acid rain (Garmo et al. 2014). In contrast, the negative correlation between DOC and pH observed during base flows (r = 3.7, R<sup>2</sup> = -0.66, p = 0.002) suggests baseflow pH is driven by natural organic acids (Garmo et al. 2014). Above pH 5.5, and at DOC concentrations greater than 2.0-5.0 mg/L, DOC can buffer against the toxic impacts of Alx, by binding the aluminum into inert organic complexes (Baldigo and Murdoch 2007; Kroglund et al. 2008; Tipping et al. 1991). It is expected that some buffering of Alx is occurring in the study streams despite low pH values.

#### **Base Cation Surplus**

Base cation surplus (BCS) reduces the influence of natural acidity from DOC, to help distinguish the impacts of natural acidity versus anthropogenic acidification (Lawrence et al. 2007; Baldigo et al. 2009). BCS is the difference between the sum of cations (calcium, potassium, magnesium, and sodium) and anions (chloride, nitrate, sulfate, and strong organic anions as defined as 0.071\*DOC-2.1; Lawrence et al. 2007). The threshold for aluminum

mobilization occurs at a BCS around 0, regardless of DOC values. Over two sampling events (July and Nov. 2019), BCS ranged from -2.83 to 148.7 (Appendix II Table 5). The upstream Richardson Brook site and Creamer Brook both had a negative average BCS, indicating that buffering capacity is insufficient to counter the stream's acidity (Baldigo et al. 2009). As expected, Beaverdam Stream and Barney Brook had the highest average BCS, and thus the highest capacity to buffer against the mobilization of toxic aluminum. This confirms the trends indicated by the calcium and ANC values (Fig. 7). At all sites, BCS was lowest in November, when rain events drive episodic pH depressions.

#### Macroinvertebrates

Due to the shell application schedule, no macroinvertebrate samples were collected in the treatment stream, Richardson Brook in 2019. Macroinvertebrate samples were only collected in Creamer Brook and Beaverdam Stream, to confirm results collected in 2018. Both streams attained Maine's highest aquatic life water quality classification (Class A; Appendix III; Davies et al. 2016), as had most streams in the prior years of this study (Zimmermann 2019). The dominant taxa were genera of mayflies and caddisflies that prefer habitat with cold, fast-flowing water, in contrast with the dominant genera observed in the two prior years (Appendix II, Table 7; Zimmermann 2019). This is not surprising, as rainfall in 2019 maintained significantly higher flow in all streams compared with 2017 and 2018 (Fig. 3). Mayflies are the most sensitive group of aquatic insects to acidity (Weiderholm 1984) and represented around one third of the generic richness, suggesting a healthy macroinvertebrate assemblage requiring good water quality. Rainfall driven decreases in pH (<5) may have a detrimental impact on any acid-sensitive macroinvertebrates present, although the most critical period for macroinvertebrates is likely emergence, so species that reproduce in the fall and spring would be most affected (Bradley and Ormerod 2002; Wiederholm 1984). However, as episodic acidity events have been occurring for decades, the macroinvertebrate assemblage in Downeast streams may be tolerant to low pH pulses. Salmon are thought to be opportunistic feeders, changing their diet to the most abundant prey available, so changes in macroinvertebrate abundance may have a stronger impact on salmon than changes in macroinvertebrate composition (Scott and Crossman 1973 as cited in Stanley and Trial 1995).

#### Conclusion

There were no significant differences in water quality before and after clam shell additions, both considering an upstream-downstream comparison in Richardson Brook, and baseline data from the prior two years. The addition of shells is expected to increase the pH, calcium, and ANC at the downstream site. The lack of change may be due to frequent rain events diluting any buffering capacity of the shells, or because shells were spread incrementally over more than two months and the minimum of data collected after the full dose was applied. Shells were spread mostly in the shallow stream edges and on the banks, so would only be in contact with the stream during higher flows, such as occurred after sondes were retrieved for the winter. A pH sensor was deployed at the downstream Richardson Brook site, with the hope of collecting pH data during the winter, to enhance the one month of data collected following the completed dose of shells. Sub-lethal stress is likely still occurring during episodic, precipitation-driven acidity events (Baker et al. 1996; Henriksen et al. 1984; Lacroix and Knox 2005; Magee et al. 2003). In the three years of the study so far, all streams experienced episodic acidification due to precipitation events, particularly in the spring and fall when natural organic acid levels are low, indicating acidity from anthropogenic sources. Frequent rain events prevented stream chemistry from recovering to pre-storm levels. Cumulative sub-lethal stress is likely causing detrimental impacts to salmon due to the combined impact of low pH and aluminum toxicity. The most sensitive salmon life stages to acidity are present in the study area from March through June. This time range also coincides with snow melt, when streams experience episodic acidity, increasing the severity of detrimental impacts to salmon. As clam shells are added to the target area, monitoring efforts will continue for at least five years to determine the efficacy of using this approach to mitigate acidity.

#### Works Cited

- Baker, J.P., Bernard, D.P., Christensen, S.W., Sale, M.J., Freda, J., Heltcher, K., Marmorek, D., Rowe, L., Scanlone, P., Suter, G., Warren-Hicks, W., and Welbourn, P. 1990. Biological effects of changes in surface water acid-base chemistry. NAPAP Report 13. In: National Acid Precipitation Assessment Program, Acidic Deposition: State of Science and Technology. Vol. II.
- Baker, J.P., Van Sickle, J., Gagen, C.J., DeWalle, D.R., Sharpe, W.E., Carline, R.F., Baldigo, B.P., Murdoch, P.S., Bath, D.W., Kretser, W.A., Simonin, H.A., Wigington, P.J., Jr. 1996. Episodic acidification of small streams in the northeastern United States: effects on fish populations. Ecological Applications. 422-437.
- Baldigo, B.P., and Murdoch, P.S. 2007. Effect of stream acidification and inorganic aluminum on mortality of brook trout (*Salvelinus fontinalis*) in the Catskill Mountains, New York. Canadian Journal of Fisheries and Aquatic Science. 54: 603-615.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Bradley, D.C., and Ormerod, S.J. 2002. Long-term effects of catchment liming on invertebrates in upland streams. Freshwater Biology. 47: 161-171.
- Clair, T.A., and Hindar, A. 2005. Liming for the mitigation of acid rain effects in freshwaters: a review of recent results. Environmental Reviews. 13: 91-128.
- Davies. S.P., Drummond, F., Courtemanch, D.L., Tsomides, L., and Danielson, T.J. 2016. Biological water quality standards to achieve biological condition goals in Maine rivers and streams: Science and policy. Maine Agricultural and Forest Experiment Station. Technical Bulletin 208.
- Dennis, I.F. and Clair, T.A. 2012. The distribution of dissolved aluminum in Atlantic salmon (Salmo salar) rivers in Atlantic Canada and its potential effect on aquatic populations. Canadian Journal of Fisheries and Aquatic Science. 69: 1174-1183.
- Driscoll, C.T., Lawrence, G.B., Bulger, A.J. Butler, T.J., Cronan, C.S., Eagar, C., Lambert, K.F., Likens, G.E., Stoddard, J.L., and Weathers, K.C. 2001. Acidic deposition in the Northeastern United States: sources and inputs, ecosystem effects, and management strategies. BioScience. 51.3: 180-198.
- Elliot, J.M., and Hurley, M.A. 1997. A functional model for maximum growth of Atlantic salmon parr, *Salmo salar*, from two populations in northwest England. Functional Ecology. 11: 592-603.
- Garmo, Ø.A., Skjelkvåle, B.L., de Wit, H.A., Colombo L., Curtis, C., Fölster, J., Hoffmann, A., Hruška, J., Høgåsen, T., Jeffries, D.S., Keller, W.B., Krám, P., Majer, V., Monteith, D.T., Paterson, A.M., Rogora, M., Rzychon, D., Steingruber, S., Stoddard, J.L., Vuorenmaa, J., and Worsztynowicz, A. 2014. Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water, Air, and Soil Pollution. 225: 1880.
- Haines, T.A., Norton, S.A., Kahl, J.S., Fay, C.W., Pauwels, S.J., and Jagoe, C.H. 1990. Intensive studies of stream fish populations in Maine. EPA/600/3-90/043.
- Halfyard, E. 2007. Initial results of an Atlantic salmon river acid mitigation program. MSc Thesis, Acadia University, 164 p.
- Henriksen, A., Skogheim, O.K., and Rosseland, B.O. 1984. Episodic changes in pH and aluminum-speciation kill fish in a Norwegian salmon river. Vatten. 40: 255-260.
- Hesthagen, T., Larsen, B.M., and Fiske, P. 2011. Liming restores Atlantic salmon (*Salmo salar*) populations in acidified Norwegian rivers. Canadian Journal of Fisheries and Aquatic Sciences. 68: 224-231.
- Kroglund, F., and Staurnes, M. 1999. Water quality requirements of smolting Atlantic salmon (*Salmo salar*) in limed acid rivers. Canadian Journal of Fisheries and Aquatic Sciences. 56: 2078-2086.

Kroglund, F., Wright, R.F., and Burchart, C. 2002. Acidification and Atlantic salmon: critical limits for Norwegian rivers. Norwegian Institute for Water Research, Oslo. Report nr 111.

- Kroglund, F., Rosseland, B.O., Teien, H.-C., Salbu, B., Kristensen, T., and Finstad, B. 2008. Water quality limits for Atlantic salmon (*Salmo salar*) exposed to short term reductions in pH and increased aluminum simulating episodes. Hydrology and Earth Systems Sciences. 12: 491-507.
- Lacroix, G.L., and Kan, K.T. 1986. Speciation of aluminum in acidic rivers of Nova Scotia supporting Atlantic salmon: a methodological evaluation. Canadian Technical Report of Fisheries and Aquatic Sciences, 1501.
- Lacroix, G.L., and Knox, D. 2005. Acidification status of rivers in several regions of Nova Scotia and potential impacts on Atlantic salmon, Canadian Technical Report of Fisheries and Aquatic Sciences, 2573.
- Lawrence, G.B., Sutherland, J.W., Boylen, C.W., Nierzwicki-Bauer, S.W., Momen, B., Baldigo, B.P., and Simonin, H.A. 2007. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids. Environmental Science and Technology. 41 (1): 93-98.
- Lien, L., Raddum, G.G., Fjellheim, A., Henriksen, A. 1996. A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. The Science of the Total Environment. 177: 173-193.
- MacAvoy, S.E., and Bulger, A.J. 1995. Survival of brook trout (*Salvelinus fontinalis*) embryos and fry in streams of different acid sensitivity in Shenandoah National Park, USA. Water, Air, and Soil Pollution. 85: 445-450.
- MacDonald, D.G., Hobe, H., and Wood, C.M. 1980. The influence of calcium on the physiological responses of the rainbow trout, *Salmon gardneri*, to low environmental pH. Journal of Experimental Biology. 88: 109-131.
- Magee, J.A., Obedzinski, M., McCormick, S.D., and Kocik, J.F. 2003. Effects of episodic acidification on Atlantic salmon (*Salmo salar*) smolts. Canadian Journal of Fisheries and Aquaculture Science. 60: 214-221.
- Maine Department of Environmental Protection Code of Maine Rules (MDEP CMR). Chapter 584: Surface Water Quality Criteria for Toxic Pollutants.
- Maine Department of Environmental Protection. 2014. QAPP for Biological Monitoring of Maine's Rivers, Streams, and Freshwater Wetlands. Appendix D: Methods for Biological Sampling and Analysis of Maine's Rivers and Streams. DEP-LW-0387-C2014, revised date 4/1/2014.
- Maine Geological Survey (MGS). 2017. Bedrock\_500K\_Units. Augusta, ME, Maine Geological Survey 1985. Using: ArcGIS. Version 10.3.1. Redlands, CA: Environmental Systems Research Institute, Inc., 2010.
- Maine Office of Geographic Information System (MEGIS). 2017a. Drainage\_Divides. Augusta, ME, Maine Office of Geographic Information System. Using: ArcGIS. Version 10.3.1. Redlands, CA: Environmental Systems Research Institute, Inc., 2010.
- Maine Office of Geographic Information System. 2017b. Wetlands\_NWI. Augusta, ME, National Wetlands Inventory, United States Fish and Wildlife Service. Using: Using: ArcGIS. Version 10.3.1. Redlands, CA: Environmental Systems Research Institute, Inc., 2010.
- Maine Revised Statutes (M.R.S.). Title 38: Waters and navigation. Chapter 3: Protection and improvement of waters. Article 4-A: Water Classification Program. Sections 464 and 465.
- McCormick, S.D., Hansen, L.P., Quinn, T.P., and Saunders, R.L. 1998. Movement, migration, and smolting of Atlantic salmon (*Salmo salar*). Canadian Journal of Fisheries and Aquatic Science. 55 (Suppl. 1): 77-92.
- McCormick, S.D., Keyes, A., Nislow, K.H., and Monette, M.Y. 2009. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (*Salmo salar*) smolts. Canadian Journal of Fisheries and Aquatic Science. 66: 394-403.
- Monette, M.Y., Björnsson, B.T., and McCormick, S.D. 2008. Effects of short-term acid and aluminum exposure on the parr-smolt transformation in Atlantic salmon (*Salmo salar*): disruption of seawater tolerance and endocrine status. General and Comparative Endocrinology. 158: 122-130.
- National Oceanic and Atmospheric Administration (NOAA). 2019a. Gulf of Maine region quarterly climate impacts and outlook. March 2019. <u>https://www.drought.gov/drought/sites/drought.gov.drought/files/media/reports/regional\_outlooks</u>.
- National Oceanic and Atmospheric Administration (NOAA). 2019b. Gulf of Maine region quarterly climate impacts and outlook. Sept. 2019. <u>http://www.nrcc.cornell.edu/services/reports/GM2019-09.pdf</u>. overview/publications/gulf-maine-quarterly-impacts-outlook.html.
- National Research Council (NRC). 2004. Atlantic Salmon in Maine. Washington, DC: The National Academies Press. https://doi.org/10.17226/10892.
- Potter, W. 1982. The effects of air pollution and acid rain on fish, wildlife, and their habitats rivers and streams. U.S. Fish and Wildlife Service, Biological Services Program, Eastern Energy and Land Use Team, FWS/OBS-80/40.5. 52 pp.

Project Share and U.S. Fish and Wildlife Service (USFWS). 2009. Restoring salmonid aquatic/riparian habitat: a strategic plan for the Downeast Maine DPS rivers.

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Stanley, J.G., and Trial, J.G. 1995. Habitat suitability index models: nonmigratory freshwater life stages of Atlantic salmon. U.S. Department of the Interior. Biological Science Report 3.

Staurnes, M. Kroglund, F., and Rosseland, B.O. 1995. Water quality requirement of Atlantic salmon (*Salmo salar*) in water undergoing acidification or liming in Norway. Water, Air, and Soil Pollution. 85: 347-352.

Tipping, E., Woof, C., and Hurley, M.A. 1991. Humic substances in acid surface waters; modelling aluminum binding, contribution to ionic charge-balance, and control of pH. Water Resources. 25(4): 425–435.

United States Atlantic Salmon Assessment Committee (USASAC). 2019. Annual Report, no. 31 – 2018 activities.

- United States Environmental Protection Agency (USEPA). 1986. Quality Criteria for Water. EPA 440/5-86-001.
- United States Environmental Protection Agency. 2018. Final Aquatic Life Ambient Water Quality Criteria for Aluminum. EPA- 822-R-18-001.
- Weather Underground. 2019. Tom's Backyard Personal Weather Station, KMEALEXA2 and Alexander Elementary School KMEBAILE9. URL https://www.wunderground.com/.
- Whiting, M.C. 2014. Final report for Project SHARE's Clam Shell Pilot Project. Maine Department of Environmental Protection: Bangor, Maine.
- Whiting, M.C. and Otto, W. 2008. Spatial and temporal patterns in the water chemistry of the Narraguagus River: a summary of the available data from the Maine DEP Salmon Rivers Program. Maine Department of Environmental Protection: Bangor, Maine.
- Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wiederholm, T. 1984. Responses of Aquatic Insects to Environmental Pollution. In: The Ecology of Aquatic Insects. Praeger Publishers, NY. 530-535.

Wood, C.M., McDonald, D.G., Ingersol, C.G., Mount, D.R., Johansson, O.E., Landsberger, S., and Bergman, H.L. 1990. Effects of water acidity, calcium, and aluminum on whole body ions of brook trout (*Salvelinus fontinalis*) continuously exposed from fertilization to swim-up: a study by instrumental neutron activation analysis. Canadian Journal of Fisheries and Aquaculture Science. 47: 1593-1603.

Zimmermann, E. 2018. Reducing acidification in endangered Atlantic salmon habitat: baseline data. Maine Department of Environmental Protection: Augusta, ME.

Zimmermann, E. 2019. Reducing acidification in endangered Atlantic salmon habitat: baseline data summary. Maine Department of Environmental Protection: Augusta, ME.

# **Appendix I – Stream Characteristics**

| Stream Name      | Site Code       | Town       | Latitude    | Longitude    | Watershed<br>Area (km <sup>2</sup> ) | Percent<br>Wetlands (%) | Percent Wetlands<br>excluding ponds<br>(%) | Mean # of fish<br>species present<br>(MDMR data) |
|------------------|-----------------|------------|-------------|--------------|--------------------------------------|-------------------------|--------------------------------------------|--------------------------------------------------|
| Barney Brook     | NMCEMBDUB02     | Wesley     | 44.98689397 | -67.63584802 | 3.63                                 | 5.8                     | 5.8                                        | unknown                                          |
| Beaverdam Stream | NMCEMBD20       | Wesley     | 44.98169    | -67.64014    | 27.78                                | 18.3                    | 13.8                                       | 5                                                |
| Creamer Brook    | NMCEMRLNSCB09   | T19 ED BPP | 44.97112996 | -67.50932403 | 13.73                                | 7.5                     | 7.2                                        | 5                                                |
| Richardson Brook | NMCEMRLNSRD09   | T19 ED BPP | 44.92662500 | -67.48657800 | 13.47                                | 13.4                    | 8.4                                        | 5                                                |
| KICHaruson Brook | NMCEMRLNSRD05-B | T19 ED BPP | 44.92616097 | -67.49302299 | 15.47                                | 15.4                    | 0.4                                        | 3                                                |

Table 1. Study site locations and watershed characteristics. Watershed area and percent wetlands calculated from MEGIS 2017a,b.

Table 2. Study site physical characteristics. Mean stream depth was measured every three weeks while sondes were deployed in 2019.

| Stream Name       |    | Bankfull stream | Mean stream |         | Substrate (%) |        |        |           |  |
|-------------------|----|-----------------|-------------|---------|---------------|--------|--------|-----------|--|
|                   |    | width (m)       | depth (cm)  | Bedrock | Boulder       | Cobble | Gravel | Sand/Silt |  |
| Barney Brook      |    | 2.1             | 33          | -       | 5             | 35     | 45     | 15        |  |
| Beaverdam Stream  |    | 6.3             | 39          | -       | 10            | 75     | 10     | 5         |  |
| Creamer Brook     |    | 6.3             | 42          | -       | 55            | 25     | 18     | 2         |  |
| Richardson Brook  | 09 | 4.1             | 44          | 15      | 30            | 40     | 10     | 5         |  |
| RICHARUSOII BROOK | В  | 4.7             | 29          | -       | 5             | 75     | 15     | 5         |  |

## **Appendix II – Summary Data Tables**

**Table 1.** Continuous Data Summary. Summary statistics (mean, standard deviation (SD), minimum and maximum) of measurements from YSI 600 XLM sondes and Onset Hobo U26 dissolved oxygen loggers, May to Nov. 2019 ( $n \sim 9,000$ )\*. Dissolved oxygen data for Barney Brook are discrete measurements from a Eureka Manta2 Sub2 sonde (n = 15).

| Stream Name           |      | pl   | H    |      | ]     | ſempera | ture (°C) |       | Specific | Conduc | tance ( | µS/cm) | Dissol | 15.77<br>14.89 |      |       |
|-----------------------|------|------|------|------|-------|---------|-----------|-------|----------|--------|---------|--------|--------|----------------|------|-------|
| Stream Name           | Mean | SD   | Min  | Max  | Mean  | SD      | Min       | Max   | Mean     | SD     | Min     | Max    | Mean   | SD             | Min  | Max   |
| Barney Brook          | 6.29 | 0.25 | 5.11 | 6.78 | 12.36 | 4.69    | -0.08     | 21.67 | 27       | 8      | 7       | 49     | 12.33  | 2.46           | 7.94 | 15.77 |
| Beaverdam Stream      | 6.03 | 0.33 | 5.18 | 6.61 | 14.56 | 5.58    | -0.02     | 27.5  | 31       | 10     | 9       | 152    | 10.0   | 1.47           | 7.47 | 14.89 |
| Creamer Brook         | 5.67 | 0.33 | 4.94 | 6.28 | 12.94 | 4.89    | -0.14     | 23.05 | 20       | 4      | 13      | 27     | 10.30  | 1.46           | 7.53 | 15.03 |
| Richardson Brook - 09 | 5.49 | 0.29 | 4.85 | 6.25 | 14.97 | 5.64    | 0         | 27.65 | 18       | 4      | 5       | 24     | 9.31   | 1.49           | 6.41 | 14.23 |
| Richardson Brook - B  | 5.47 | 0.38 | 4.58 | 6.55 | 13.95 | 5.43    | -0.2      | 26.46 | 20       | 2      | 15      | 28     | 9.91   | 1.50           | 7.02 | 14.83 |

\*Barney Brook was deployed in April 2019.

**Table 2.** Discrete Data Summary. Summary statistics (mean, SD, minimum and maximum) from grab samples collected in 2017 (June 20, Aug. 1, and Oct. 11), 2018 (April 18, July 23, and Nov. 5) and 2019 (April 1, July 31, and Nov. 19).  $n = 9^*$ .

| Stream Name                           | C    | alcium | ( <b>mg/L</b> ) | )    | Dissol |      | ganic Ca<br>g/L) | rbon | ANC (µeq/L) |       |      |       | р    | H (clos | ed-cell) |      |
|---------------------------------------|------|--------|-----------------|------|--------|------|------------------|------|-------------|-------|------|-------|------|---------|----------|------|
|                                       | Mean | SD     | Min             | Max  | Mean   | SD   | Min              | Max  | Mean        | SD    | Min  | Max   | Mean | SD      | Min      | Max  |
| Barney Brook                          | 3.29 | 1.68   | 1.16            | 5.98 | 10.6   | 4.8  | 3.4              | 19   | 177.4       | 135.0 | 46.6 | 435.9 | 6.41 | 0.45    | 5.82     | 6.96 |
| Beaverdam<br>Stream                   | 1.90 | 0.86   | 0.92            | 3.2  | 10.6   | 3.8  | 6.5              | 17   | 67.4        | 47.8  | 30.2 | 141.7 | 5.99 | 0.53    | 5.28     | 6.63 |
| Creamer Brook                         | 1.93 | 0.84   | 1.19            | 3.66 | 11.8   | 10.7 | 3.2              | 7.6  | 54.7        | 31.3  | 14.8 | 94.9  | 5.75 | 0.50    | 4.96     | 6.26 |
| Richardson<br>Brook - 09 <sup>+</sup> | 1.37 | 0.39   | 0.72            | 1.86 | 11.5   | 3.7  | 5.6              | 17   | 50.1        | 32.0  | 13.3 | 104   | 5.74 | 0.46    | 4.92     | 6.25 |
| Richardson<br>Brook - B               | 1.57 | 0.60   | 0.70            | 2.85 | 11.4   | 3.0  | 7.0              | 17   | 62.1        | 39.9  | 13.9 | 147   | 5.79 | 0.49    | 4.94     | 6.34 |

 $\overline{}$  Creamer Brook was not sampled in April 2018 or 2019 (n = 7). Beaverdam Stream was not sampled in 2017 (n = 6).

+ Rich09 includes samples collected from Rich-A (a site 360m downstream) in 2017, 2018, and April 2019.

**Table 3.** Aluminum Species Data Summary. Summary statistics (mean, SD, minimum and maximum) from grab samples collected in 2017 (June 20, Aug. 1, and Oct. 11), 2018 (April 18, July 23, and Nov. 5) and 2019 (April 1, July 31, and Nov. 19).  $n = 9^*$ .

| Stream Name            | Total Aluminum (µg/L) |     |     |     | Dissolved Aluminum (µg/L) |     |     |     | Exchangeable Aluminum (µg/L) |    |     |     |
|------------------------|-----------------------|-----|-----|-----|---------------------------|-----|-----|-----|------------------------------|----|-----|-----|
| Stream Name            | Mean                  | SD  | Min | Max | Mean                      | SD  | Min | Max | Mean                         | SD | Min | Max |
| Barney Brook           | 192                   | 106 | 40  | 423 | 162                       | 95  | 32  | 377 | 19                           | 17 | 2   | 54  |
| Beaverdam Stream       | 149                   | 48  | 110 | 241 | 126                       | 49  | 78  | 219 | 11                           | 8  | <1  | 18  |
| Creamer Brook          | 232                   | 108 | 94  | 424 | 214                       | 102 | 92  | 399 | 33                           | 17 | <1  | 53  |
| Richardson Brook – 09+ | 202                   | 65  | 131 | 300 | 175                       | 62  | 75  | 279 | 18                           | 11 | 3   | 40  |
| Richardson Brook - B   | 189                   | 63  | 101 | 300 | 182                       | 63  | 122 | 278 | 20                           | 10 | 2   | 29  |

\* Creamer Brook was not sampled in April 2018 or 2019 (n = 7). Beaverdam Stream was not sampled in 2017 (n = 6).

+ Rich09 includes samples collected from Rich-A (a site 360m downstream) in 2017, 2018, and April 2019.

**Table 4.** Exceedance Summary. Percentage of data observations that exceeded stress threshold values in 2019 for sonde data (pH, temperature and DO). Grab sample data (calcium and exchangeable aluminum) combine all three years of the study 2017-2019.

|                               |                               |      | Continuous I               | Data    |         | G            | Frab Sample I | Data                                 |
|-------------------------------|-------------------------------|------|----------------------------|---------|---------|--------------|---------------|--------------------------------------|
| Stream Name                   | Stream Name pH<br>(n ~ 9,000) |      | Temperature<br>(n ~ 9,000) |         |         | Calc<br>(n = |               | Exchangeable<br>Aluminum<br>(n = 9)* |
| Thresholds                    | <5.4                          | <6.0 | >20.0 °C                   | <5 mg/L | <7 mg/L | <2.0 mg/L    | <4.0 mg/L     | >15 µg/L                             |
| Barney Brook                  | 0.4                           | 13.3 | 2.4                        | 0       | 0       | 22.2         | 66.7          | 33.3                                 |
| Beaverdam Stream <sup>a</sup> | 5.73                          | 38.2 | 17.8                       | 0       | 0       | 50           | 100           | 33.3                                 |
| Creamer Brook                 | 23.8                          | 81.5 | 5.1                        | 0       | 0       | 71.4         | 100           | 71.4                                 |
| Richardson Brook – 09+        | 31.1                          | 94.6 | 18.3                       | 0       | 1.5     | 100          | 100           | 44.4                                 |
| Richardson Brook – B          | 38.0                          | 92.1 | 13.5                       | 0       | 0       | 90           | 100           | 66.7                                 |

^ DO data for Barney Brook are discrete measurements from a Eureka Manta2 Sub2 sonde (n = 15).

\* No grab samples were collected at Creamer Brook April 2018 or 2019 (n = 7)

a No grab samples were collected at Beaverdam Stream in 2017 (n = 6).

+ Rich09 includes samples collected from Rich-A (a site 360m downstream) in 2017, 2018, and April 2019.

**Table 5.** Base Cation Surplus (BCS). Mean sum of cations and anions ( $\pm$  SD). Cations include calcium, potassium, magnesium, and sodium. Anions include chloride, nitrate, sulfate, and strong organic anions (0.071\*DOC-2.1, from Lawrence et al. 2007). Grab samples were collected July 31 and Nov. 19, 2019 (n = 2).

| Stream Name           | Cation | s (µEq/L) | Anions | (µEq/L) | BCS (µEq/L) |       |  |
|-----------------------|--------|-----------|--------|---------|-------------|-------|--|
| Stream Manie          | Mean   | SD        | Mean   | SD      | Mean        | SD    |  |
| Barney Brook          | 168.9  | 27.29     | 114.6  | 63.23   | 54.28       | 35.94 |  |
| Beaverdam Stream      | 206.2  | 14.42     | 122.9  | 78.23   | 88.8        | 84.75 |  |
| Creamer Brook         | 112.6  | 38.46     | 114.4  | 39.95   | -1.77       | 1.49  |  |
| Richardson Brook - 09 | 113.9  | 39.97     | 114.6  | 40.39   | -0.71       | 0.42  |  |
| Richardson Brook - B  | 118.8  | 34.42     | 111.1  | 40.83   | 7.70        | 6.41  |  |

**Table 6.** Treatment Summary. Mean values ( $\pm$  SD) pre-shell application (May 23 – July 24, 2019), during shell application (July 25 – Oct. 8, 2019), and post-shell application (Oct. 9 – Nov. 19, 2019). For pH, n ~ 3,000 per time period. For grab samples (Ca, ANC, and Alx), n ~ 1.

| Stream Name                        |               | рН            |                              | Ca   | Calcium (mg/L) |      |     | Exchangeable<br>Aluminum (μg/L) |      |     | Acid Neutralization<br>Capacity (µEq/L) |      |  |
|------------------------------------|---------------|---------------|------------------------------|------|----------------|------|-----|---------------------------------|------|-----|-----------------------------------------|------|--|
|                                    | Pre           | During        | Post                         | Pre  | During         | Post | Pre | During                          | Post | Pre | During                                  | Post |  |
| Barney Brook                       | $6.3 \pm 0.2$ | $6.5 \pm 0.2$ | $6.0 \pm 0.3$                | 0.92 | 3.68           | 2.39 | 21  | 14                              | 5    | 50  | 244                                     | 80   |  |
| Beaverdam Stream <sup>a</sup>      | $5.9 \pm 0.2$ | $6.3 \pm 0.2$ | $5.7 \pm 0.3$                | 1.17 | 2.23           | 1.77 | 15  | 4                               | <1   | 31  | 112                                     | 54   |  |
| Creamer Brook                      | $5.6 \pm 0.3$ | $6.0 \pm 0.2$ | $5.4 \pm 0.3$                | -    | 1.43           | 1.19 | -   | 28                              | <1   | -   | 54                                      | 19   |  |
| Richardson Brook – 09 <sup>+</sup> | $5.5 \pm 0.2$ | $5.6 \pm 0.3$ | $5.2 \pm 0.2$                | 0.72 | 1.50           | 1.29 | 11  | 27                              | 11   | 21  | 74                                      | 24   |  |
| Richardson Brook - B               | $5.5 \pm 0.2$ | $5.6 \pm 0.4$ | $\pm 0.4 \qquad 5.0 \pm 0.2$ |      | 1.72           | 1.40 | 16  | 31                              | 14   | 20  | 80                                      | 30   |  |

**Table 7.** Macroinvertebrate Summary. Samples were collected in August each year (2017-2019) using rock bags following the DEP protocol (2014) and analyzed by a certified taxonomist to the lowest possible level (species). Metrics are presented as the mean ± standard deviation. EPT taxa include mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera). 2019 taxa are presented in a separate column due to the differences in composition compared with the two prior years.

| Stream Name          | Years                  | Total<br>Mean | Generic    | EPT<br>Generic | Relative<br>Ephemeroptera | Dominant                              | Taxa          |
|----------------------|------------------------|---------------|------------|----------------|---------------------------|---------------------------------------|---------------|
| Stream Wante         | Sampled                | Abundance     | Richness   | Richness       | Abundance                 | 2017-2018                             | 2019          |
| Beaverdam Stream     | 2018 - 2019            | $280 \pm 164$ | 38 ± 2     | 16 ± 3         | 12 ± 3%                   | Polypedilum                           | Dolophilodes  |
|                      | (n = 2)                |               |            |                |                           | Rheotanytarsus                        | Hydropsyche   |
|                      | 2017 - 2019            |               |            |                |                           | Lepidostoma                           | Maccaffertium |
| Creamer Brook        | (n = 3)                | 183 ± 78      | $38 \pm 2$ | $17 \pm 2$     | $47\pm26\%$               | Leptophlebiidae<br>(Paraleptophlebia) | Hydropsyche   |
| Richardson Brook - A | 2017 - 2018            | 105 + 1       | $34 \pm 4$ | $16 \pm 4$     | $46 \pm 5\%$              | Lepidostoma                           |               |
| Kichardson Brook - A | (n = 2)                | $103 \pm 1$   | 54 ± 4     | $10 \pm 4$     | $40 \pm 5\%$              | Paraleptophlebia                      |               |
|                      |                        |               |            |                |                           | Lepidostoma                           |               |
| Richardson Brook - B | 2017 - 2018<br>(n = 2) | $73\pm23$     | $37\pm 8$  | $17\pm 6$      | 31 ± 1%                   | Leptophlebiidae<br>(Paraleptophlebia) |               |
|                      |                        |               |            |                |                           | Promoresia                            |               |

Maine Department of Environmental Protection

Reducing Acidification in Atlantic Salmon Habitat

**Appendix III – Biomonitoring Key Report** 



# Maine Department of Environmental Protection Biological Monitoring Program

# Aquatic Life Classification Attainment Report

| STATE OF MAINE         | Aq                    |                 | silication Attainment Report                  |          |
|------------------------|-----------------------|-----------------|-----------------------------------------------|----------|
|                        |                       | Stati           | ion Information                               |          |
| <b>Station Number:</b> | S-1115                |                 | River Basin: Maine Coastal                    |          |
| Waterbody:             | Creamer Brook - Stati | on 1115         | HUC8 Name: Maine Coastal                      |          |
| Town:                  | T19 Ed Bpp            |                 | Latitude: 44 58 16.07 N                       |          |
| Directions:            | SITE IS DOWNSTREA     | M OF THE OLD E  | BRIDGE Longitude: 67 30 33.57 W               |          |
|                        | LOCATION.             |                 | Stream Order: 2                               |          |
|                        |                       | Sami            | ple Information                               |          |
| T NT I                 | <b>37(3</b> T         |                 | R.                                            | /21/2010 |
| Log Number:            | • 1                   | of Sample: ROCI |                                               |          |
| Subsample Factor:      | X1 Replic             |                 | Date Retrieved: 8                             | /29/2019 |
| L                      |                       |                 | ication Attainment                            |          |
| Statutory Class:       | AA                    | Final Determi   |                                               |          |
| Model Result with      | —                     |                 | termination: Model                            |          |
| Date Last Calculat     | ted: 12/20/2019       | Comments:       |                                               |          |
|                        |                       | Mod             | lel Probabilities                             |          |
|                        | First Stage Model     |                 | <u>C or Better Model</u>                      |          |
| Class A                | 0.79 Class C          | 0.01            | Class A, B, or C 1.00                         |          |
| Class B                | 0.21 NA               | 0.00            | Non-Attainment 0.00                           |          |
|                        | B or Better Model     |                 | <u>A Model</u>                                |          |
| Class A or             | B                     | 1.00            | Class A 0.98                                  |          |
| Class C or             | Non-Attainment        | 0.00            | Class B or C or Non-Attainment 0.02           |          |
|                        |                       | Mo              | odel Variables                                |          |
| 01 Total Mean Ab       | oundance              | 95.67           | 18 Relative Abundance Ephemeroptera           | 0.3      |
| 02 Generic Richne      | ess                   | 36.00           | 19 EPT Generic Richness                       | 16.0     |
| 03 Plecoptera Mea      | an Abundance          | 3.00            | 21 Sum of Abundances: Dicrotendipes,          | 3.0      |
| 04 Ephemeroptera       | Mean Abundance        | 34.67           | Micropsectra, Parachironomus, Helobdella      |          |
| 05 Shannon-Wien        | er Generic Diversity  | 3.67            | 23 Relative Generic Richness- Plecoptera      | 0.0      |
| 06 Hilsenhoff Bio      | tic Index             | 3.91            | 25 Sum of Abundances: <i>Cheumatopsyche</i> , | 0.3      |
|                        | dance - Chironomidae  | 0.18            | Cricotopus, Tanytarsus, Ablabesmyia           |          |
| 08 Relative Gener      | ic Richness Diptera   | 0.33            | 26 Sum of Abundances: Acroneuria,             | 31.3     |
| 09 Hydropsyche A       |                       | 18.67           | Maccaffertium, Stenonema                      | 0.4      |
| 11 Cheumatopsych       |                       | 0.33            | 28 EP Generic Richness/14                     | 0.4      |
| 12 EPT Generic R       |                       | 1.33            | 30 Presence of Class A Indicator Taxa/7       | 0.2      |
| Generic Richne         |                       | 0.00            | Five Most Dominant Taxa                       |          |
|                        | dance - Oligochaeta   | 0.00<br>1.33    | Rank Taxon Name Percer                        |          |
| Functional Gro         | Abundance (Family     | 1.33            | 1 Maccaffertium 31.3                          |          |
| 16 Tanypodinae M       |                       | 1.33            | 2 Hydropsyche 19.5                            |          |
| (Family Function       |                       | 1.55            | 3 Lepidostoma 9.4                             |          |
| · ·                    | bundance (Family      | 4.33            | 4 Rheotanytarsus 3.4                          |          |
| Functional Gro         |                       | т.JJ            | 5 <i>Rheocricotopus</i> 3.1                   |          |
|                        | ··r /                 |                 | 6 <i>Micropsectra</i> 3.1                     |          |
|                        |                       |                 | 7 Polypedilum 3.1                             | 4        |



# Maine Department of Environmental Protection Biological Monitoring Program

| ation 1115<br>rocessing Information<br>Taxonomist: MICHAEL COLF<br>Waterbody Informa<br>Temperature: |                                                                                                        |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Processing Information<br>Faxonomist: MICHAEL COLE<br>Waterbody Informa                              | 5                                                                                                      |
| Caxonomist: MICHAEL COLE<br>Waterbody Informa                                                        |                                                                                                        |
| Waterbody Informa                                                                                    |                                                                                                        |
| · ·                                                                                                  | tion - Retrieval                                                                                       |
| Temperature:                                                                                         |                                                                                                        |
|                                                                                                      | 17.02 deg C                                                                                            |
| Dissolved Oxygen:                                                                                    | 9.18 mg/l                                                                                              |
| Dissolved Oxygen Saturation:                                                                         | 95.2 %                                                                                                 |
| Specific Conductance:                                                                                | 18.1 uS/cm                                                                                             |
| Velocity:                                                                                            | 24.4 cm/s                                                                                              |
| oH:                                                                                                  | 5.9                                                                                                    |
| Wetted Width:                                                                                        | 6.3 m                                                                                                  |
| Bankfull Width:                                                                                      | 6.5 m                                                                                                  |
| Depth:                                                                                               | 34 cm                                                                                                  |
| emistry                                                                                              |                                                                                                        |
| at Characteristics                                                                                   |                                                                                                        |
| Terrain                                                                                              |                                                                                                        |
| Flat                                                                                                 |                                                                                                        |
|                                                                                                      |                                                                                                        |
| Substrate                                                                                            |                                                                                                        |
| Boulder                                                                                              | 55 %                                                                                                   |
| Gravel                                                                                               | 10 %                                                                                                   |
| Rubble/Cobble                                                                                        | 35 %                                                                                                   |
| ary - 2004 Data                                                                                      |                                                                                                        |
|                                                                                                      |                                                                                                        |
| a                                                                                                    | at Characteristics<br><u>Terrain</u><br>Flat<br><u>Substrate</u><br>Boulder<br>Gravel<br>Rubble/Cobble |

WATER SAMPLES COLLECTED BY SALMON UNIT - EMILY Z.



## Maine Department of Environmental Protection Biological Monitoring Program Aquatic Life Taxonomic Inventory Report

| Waterbody: Creamer Brook<br>Subsample Factor: X1 | - Station 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                      | Tov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vn: T19 Ed B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | рр                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subsample Fastor: V1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Waterbody: Creamer Brook - Station 1115                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Subsample raciol. Al                             | Factor: X1 Replicates: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calculated: 12/20/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Maine<br>Taxonomic<br>Code                       | Count<br>(Mean of Samplers)<br>Actual Adjusted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | Hilsenhoff Functional<br>Biotic Feeding<br>Index Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Relative<br>Abundance %<br>Actual Adjusted             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020207                                         | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.67                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                    | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020209042                                      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.33                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020209042121                                   | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020301                                         | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.67                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                    | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020307043                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020402011                                      | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.33                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4                                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020402015                                      | 24.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.00                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.4                                                   | 31.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 09020402015055                                   | 5.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.9                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020406026                                      | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.33                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4                                                    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020410036                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020410036115                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020603010                                      | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.33                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4                                                    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020604015                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020604016                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.67                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 09020604016031                                   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020604016032                                   | 15.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.4                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020604016037                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020605019                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020607026                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020608039                                      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                    | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020609044                                      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020611064                                      | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.00                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.4                                                    | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020618075                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.33                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020618075147                                   | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09020618078                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020701003                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.33                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09020701003003                                   | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09021011                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09021011008                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09021011020                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.33                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09021011020041                                   | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09021011021                                      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                    | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09021011033                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09021011057                                      | 2.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.00                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.8                                                    | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| s 09021011057106                                 | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 09021011065                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.33                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 09021011065113                                   | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| -                                                | Taxonomic<br>Code           09020207           09020209042           09020209042121           09020301           09020307043           09020402011           09020402015           09020402015           09020402015055           0902040015           0902040036115           09020603010           09020604016031           09020604016031           09020604016032           09020604016032           09020604016037           09020605019           09020607026           09020611064           09020618075           09020618075147           09020618075           09020701003           09021011020           09021011020           09021011020           09021011020           09021011021           09021011057           09021011057106           09021011057106           09021011065 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Taxonomic<br>Code         (Mean of Samplers)<br>Actual Adjusted           09020207         1.67         1.67           09020209042         0.67         1.33           09020209042121         0.67         1.67           09020301         1.67         1.67           09020307043         0.33         0.33           09020402015         24.33         30.00           09020402015         5.67         0902040026           0902040026         2.33         2.33           0902040026         2.33         2.33           0902040036115         1.00         09020603010           09020604016         18.67         09020604016           09020604016         18.67         09020604016031           09020604016031         2.00         09020604016032           09020604016032         15.67         09020607026           09020607026         0.33         0.33           09020607026         0.33         0.33           09020607026         0.33         0.33           09020618075         0.33         0.33           09020618075         0.33         0.33           09020618075         0.33         0.33           09020701003003 | Taxonomic<br>Code         (Mean of Samplers)<br>Actual Adjusted         Biotic<br>Index           09020207         1.67         1.67         1.67           090202090421         0.67         1.33         0           09020209042121         0.67         1.67         0           09020307043         0.33         0.33         5           09020402011         1.33         1.33         1           09020402015         24.33         30.00         4           09020402015055         5.67         0         0           0902040006         2.33         2.33         1           0902040036115         1.00         3         3           09020604016         18.67         4           09020604016031         2.00         -           09020604016032         15.67         -           09020604016031         2.00         -           09020604016032         15.67         2           09020604016033         1.00         1.00           09020605019         1.00         1.00           09020605019         0.67         0.67           09020618075         0.33         0.33           09020618075         0.33         0.33< | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Taxonomic<br>Code         (Mean of Samplers)<br>Actual Adjusted         Biotic<br>Index         Feeding<br>Group         Abundan<br>Actual Adjusted           09020207         1.67         1.67          1.7           09020209042         0.67         1.33         0         PR         0.7           09020209042121         0.67         0         PR         0.7           09020301         1.67         1.67          1.7           09020307043         0.33         0.33         5         PR         0.3           09020402015         24.33         30.00         4         SC         25.4           0902040201505         5.67          5.9         9           0902040201505         5.67          5.9         9           09020400026         2.33         2.33         1         CG         2.4           0902040036115         1.00         3         0.3         5         CF         0.3           09020604016031         2.00          2.1         09020604016037         1.00          1.0           09020604016037         1.00         1.00         2         PR         1.0           09020604016037 |  |  |



### Maine Department of Environmental Protection Biological Monitoring Program Aquatic Life Taxonomic Inventory Report

| ATE OF MAIN          |               | Aquatic Life Tax                        |                                | childry h | cport                         |                                  |                                  |      |  |
|----------------------|---------------|-----------------------------------------|--------------------------------|-----------|-------------------------------|----------------------------------|----------------------------------|------|--|
| Station Number: S-1  | 1115 Wate     | Vaterbody: Creamer Brook - Station 1115 |                                |           | Town: T19 Ed Bpp              |                                  |                                  |      |  |
| Log Number: 2763 Sub | 63 Subs       | ample Factor: X1                        | Replicates: 3                  |           | Calculated: 12/20/2019        |                                  |                                  |      |  |
| Taxon                |               | Maine<br>Taxonomic<br>Code              | Cour<br>(Mean of S<br>Actual A | amplers)  | Hilsenhoff<br>Biotic<br>Index | f Functional<br>Feeding<br>Group | Relativ<br>Abundand<br>Actual Ad | ce % |  |
| Tvetenia paucunca    |               | 09021011065114                          | 1.00                           |           |                               |                                  | 1.0                              |      |  |
| Micropsectra         |               | 09021011070                             | 3.00                           | 3.00      | 7                             | CG                               | 3.1                              | 3.1  |  |
| Rheotanytarsus       |               | 09021011072                             |                                | 3.33      | 6                             | CF                               |                                  | 3.5  |  |
| Rheotanytarsus exi   | guus group    | 09021011072127                          | 0.67                           |           |                               | CF                               | 0.7                              |      |  |
| Rheotanytarsus pel   | llucidus      | 09021011072128                          | 2.67                           |           |                               | CF                               | 2.8                              |      |  |
| Stempellinella       |               | 09021011074                             | 0.33                           | 0.33      | 2                             |                                  | 0.3                              | 0.   |  |
| Tanytarsus           |               | 09021011076                             |                                |           | 6                             | CF                               |                                  |      |  |
| Microtendipes        |               | 09021011094                             |                                | 1.33      | 6                             | CF                               |                                  | 1.4  |  |
| Microtendipes rydd   | alensis group | 09021011094168                          | 1.33                           |           |                               |                                  | 1.4                              |      |  |
| Polypedilum          |               | 09021011102                             |                                | 3.00      | 6                             | SH                               |                                  | 3.   |  |
| Polypedilum avicep   | DS            | 09021011102181                          | 2.67                           |           |                               |                                  | 2.8                              |      |  |
| Polypedilum illinoe  | ense group    | 09021011102185                          | 0.33                           |           |                               |                                  | 0.3                              |      |  |
| Atherix              |               | 09021015055                             | 0.67                           | 0.67      | 2                             | PR                               | 0.7                              | 0.   |  |
| Hydrochus            |               | 09021105035                             | 0.33                           | 0.33      |                               | SH                               | 0.3                              | 0.   |  |
| Dubiraphia           |               | 09021113064                             |                                | 0.33      | 6                             |                                  |                                  | 0.   |  |
| Dubiraphia vittata   |               | 09021113064038                          | 0.33                           |           |                               |                                  | 0.3                              |      |  |
| Promoresia           |               | 09021113069                             |                                | 2.00      |                               |                                  |                                  | 2.   |  |
| Promoresia tardell   | la            | 09021113069052                          | 2.00                           |           |                               |                                  | 2.1                              |      |  |
| Stenelmis            |               | 09021113070                             | 0.67                           | 0.67      | 5                             | SC                               | 0.7                              | 0.1  |  |
| Acariformes          |               | 090301                                  | 0.33                           | 0.33      |                               |                                  | 0.3                              | 0.   |  |



# Maine Department of Environmental Protection Biological Monitoring Program

Aquatic Life Classification Attainment Report

|                      | Stati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 9                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | River Basin: Maine Coastal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| rdam Stream - S      | tation 1149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HUC8 Name: Maine Coastal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| ÿ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Latitude: 44 58 54.09 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| JPSTREAM FRO         | M ROAD CROSSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NG. Longitude: 67 38 24.5 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stream Order: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      | Samj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ple Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Туре                 | of Sample: ROCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K BAG Date Deployed: 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/31/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Replic               | cates: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date Retrieved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/29/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                      | Classifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cation Attainment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| AA                   | Final Determi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>nation: A</b> Date: 1/9/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 12/20/2019           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| C M 11               | Miod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Better Model         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Attainmont           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Attainment           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ce                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| ndance               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 Sum of Abundances: Cheumatopsyche,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cricotopus, Tanytarsus, Ablabesmyia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26 Sum of Abundances: Acroneuria,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| *                    | 74.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maccaffertium, Stenonema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 EP Generic Richness/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| s/ Diptera           | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 Presence of Class A Indicator Taxa/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Five Most Dominant Taxa</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rank Taxon Name Perce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ance (Family         | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 1 1                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| roup)<br>nce (Family | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 Maccaffertium 7.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      | erdam Stream - S<br>Py<br>JPSTREAM FROM<br>Type<br>Replic<br>AA<br>5: A<br>12/20/2019<br>t Stage Model<br>Class C<br>NA<br>Better Model<br>Class C<br>NA<br>Better Model<br>Attainment<br>ce<br>Indance<br>Abundance<br>Indance<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera<br>Chironomidae<br>Inness Diptera | erdam Stream - Station 1149<br>Ey<br>JPSTREAM FROM ROAD CROSSIN<br>Type of Sample: ROCH<br>Replicates: 3<br>Classifi<br>AA Final Determin<br>AA Final Determin<br>AA Final Determin<br>AA Reason for De<br>12/20/2019 Comments:<br>Mod<br>t Stage Model<br>Class C 0.00<br>NA 0.00<br>Better Model<br>Class C 0.00<br>NA 0.00<br>Ce 395.67<br>36.00<br>Indance 2.33<br>Abundance 38.33<br>Peric Diversity 2.95<br>ex 2.43<br>Chironomidae 0.12<br>hness Diptera 0.33<br>nce 74.33<br>Indance 1.33<br>ss/ Diptera 1.50<br>Oligochaeta 0.00<br>dance (Family 1.67<br>abundance 0.00<br>Froup) | erdam Stream - Station 1149HUC8 Name: Maine Coastal<br>Latitude: 44 58 54.09 N<br>Longitude: 67 38 24.5 W<br>Stream Order: 1PSTREAM FROM ROAD CROSSING.Longitude: 67 38 24.5 W<br>Stream Order: 1Sample InformationType of Sample: ROCK BAGDate Deployed: 7<br>Replicates: 3Classification AttainmentAAFinal Determination: A<br>Date: 1/9/2020A Reason for Determination: Model12/20/2019Comments:Model ProbabilitiesLitage Model<br>Class COn Constitution: Model100Class A, B, or C1.00Class A, B, or C1.00Class A, B, or C1.00Class A1.00Class B or C or Non-Attainment0.001.00Class B or C or Non-Attainment0.002.332.332.1 Sum of Abundances: Dicrotendipes,<br>AbundanceAbundance2.332.332.6 Sum of Abundances: Cheumatopsyche,<br>cChironomidae0.12Cricotopus, Tanytarsus, Ablabesmyia<br>nnees Diptera0.332.6 Sum of Abundances: Acroneuria,<br>meance0.332.6 Sum of Abundances: Acroneuria,<br>Maccaffertium, Stenonemamdance1.332.432.5 Sum of Class A Indicator Taxa/7Chironomidae |  |  |  |



# Maine Department of Environmental Protection Biological Monitoring Program

# Aquatic Life Classification Attainment Report

| Station Number: S-1149 T      | own: Wesley                           |                              | Date Deployed: 7/31/2019  |  |  |
|-------------------------------|---------------------------------------|------------------------------|---------------------------|--|--|
| Log Number: 2764 W            | Vaterbody: Beaverdam Strea            | am - Station 1149            | Date Retrieved: 8/29/2019 |  |  |
|                               | Sample Collection an                  | d Processing Information     |                           |  |  |
| Sampling Organization: BIOMON | NITORING UNIT                         | Taxonomist: MICHAEL COL      | E                         |  |  |
| Waterbody Information         | n - Deployment                        | Waterbody Informa            | ation - Retrieval         |  |  |
| Temperature:                  | 27 deg C                              | Temperature:                 | 18.39 deg C               |  |  |
| Dissolved Oxygen:             | 7.73 mg/l                             | Dissolved Oxygen:            | 8.96 mg/l                 |  |  |
| Dissolved Oxygen Saturation:  | 97.7 %                                | Dissolved Oxygen Saturation: | 95.3 %                    |  |  |
| Specific Conductance:         | 30.2 uS/cm                            | Specific Conductance:        | 74.6 uS/cm                |  |  |
| Velocity:                     |                                       | Velocity:                    | 27.4 cm/s                 |  |  |
| pH:                           | 6.63                                  | pH:                          | 6.54                      |  |  |
| Wetted Width:                 | 5.6 m                                 | Wetted Width:                | 5.8 m                     |  |  |
| Bankfull Width:               | 6.6 m                                 | Bankfull Width:              | 6.6 m                     |  |  |
| Depth:                        | 29 cm                                 | Depth:                       | 35 cm                     |  |  |
|                               | Water                                 | Chemistry                    |                           |  |  |
|                               | Summary of Ha                         | bitat Characteristics        |                           |  |  |
| Landuse Name                  | Canopy Cover                          | Terrain                      |                           |  |  |
| Upland Conifer                | Dense                                 | Flat                         |                           |  |  |
| Upland Hardwood               |                                       |                              |                           |  |  |
| Potential Stressor            | Location                              | Substrate                    |                           |  |  |
|                               | Minimally Disturbed                   | Boulder                      | 20 %                      |  |  |
|                               | , , , , , , , , , , , , , , , , , , , | Gravel                       | 5 %                       |  |  |
|                               |                                       | Rubble/Cobble                | 70 %                      |  |  |
|                               |                                       | Sand                         | 5 %                       |  |  |
|                               | Landcover Su                          | mmary - 2004 Data            |                           |  |  |
|                               | Samnle                                | Comments                     |                           |  |  |
|                               | *                                     |                              |                           |  |  |

WATER SAMPLES COLLECTED BY SALMON UNIT - EMILY Z.



## Maine Department of Environmental Protection Biological Monitoring Program Aquatic Life Taxonomic Inventory Report

| STATE OF MAINE           | Aquatic Life Tax                   | onomic Inv                  | ventory R | leport                       |                                  |                               |      |  |
|--------------------------|------------------------------------|-----------------------------|-----------|------------------------------|----------------------------------|-------------------------------|------|--|
| Station Number: S-1149   | Waterbody: Beaverdam Stre          | eam - Station               | n 1149    | Town: Wesley                 |                                  |                               |      |  |
| Log Number: 2764         | Subsample Factor: X1 Replicates: 3 |                             |           | Calculated: 12/20/2019       |                                  |                               |      |  |
| Taxon                    | Maine<br>Taxonomic<br>Code         | Cou<br>(Mean of S<br>Actual | Samplers) | Hilsenhof<br>Biotic<br>Index | f Functional<br>Feeding<br>Group | Relati<br>Abundan<br>Actual A | ce % |  |
| Perlodidae               | 09020207                           | 0.67                        | 0.67      |                              |                                  | 0.2                           | 0.2  |  |
| Acroneuria               | 09020209042                        |                             | 1.67      | 0                            | PR                               |                               | 0.4  |  |
| Acroneuria abnormis      | 09020209042121                     | 1.33                        |           | 0                            | PR                               | 0.3                           |      |  |
| Acroneuria lycorias      | 09020209042125                     | 0.33                        |           |                              |                                  | 0.1                           |      |  |
| Boyeria                  | 09020301004                        |                             | 1.33      | 2                            | PR                               |                               | 0.3  |  |
| Boyeria grafiana         | 09020301004011                     | 0.67                        |           |                              |                                  | 0.2                           |      |  |
| Boyeria vinosa           | 09020301004012                     | 0.67                        |           |                              |                                  | 0.2                           |      |  |
| Calopterygidae           | 09020307                           | 0.67                        | 0.67      |                              |                                  | 0.2                           | 0.2  |  |
| Acerpenna                | 09020401007                        |                             | 0.67      | 5                            | CG                               |                               | 0.2  |  |
| Acerpenna macdunnoughi   | 09020401007001                     | 0.33                        |           |                              |                                  | 0.1                           |      |  |
| Acerpenna pygmaea        | 09020401007011                     | 0.33                        |           |                              |                                  | 0.1                           |      |  |
| Epeorus                  | 09020402009                        | 4.00                        | 4.00      | 0                            | SC                               | 1.0                           | 1.(  |  |
| Leucrocuta               | 09020402011                        | 2.00                        | 2.00      | 1                            | SC                               | 0.5                           | 0.5  |  |
| Maccaffertium            | 09020402015                        | 13.67                       | 30.67     | 4                            | SC                               | 3.5                           | 7.8  |  |
| Maccaffertium vicarium   | 09020402015055                     | 17.00                       |           |                              |                                  | 4.3                           |      |  |
| Paraleptophlebia         | 09020406026                        | 1.00                        | 1.00      | 1                            | CG                               | 0.3                           | 0.3  |  |
| Dolophilodes             | 09020601001                        |                             | 149.67    | 0                            | CF                               |                               | 37.8 |  |
| Dolophilodes distincta   | 09020601001001                     | 149.67                      |           |                              |                                  | 37.8                          |      |  |
| Lype                     | 09020602004                        |                             | 0.33      | 2                            | SC                               |                               | 0.   |  |
| Lype diversa             | 09020602004005                     | 0.33                        |           |                              |                                  | 0.1                           |      |  |
| Cheumatopsyche           | 09020604015                        | 1.33                        | 1.33      | 5                            | CF                               | 0.3                           | 0.3  |  |
| Hydropsyche              | 09020604016                        | 9.67                        | 74.33     | 4                            | CF                               | 2.4                           | 18.8 |  |
| Hydropsyche slossonae    | 09020604016031                     | 10.67                       |           |                              |                                  | 2.7                           |      |  |
| Hydropsyche sparna       | 09020604016032                     | 23.67                       |           |                              |                                  | 6.0                           |      |  |
| Hydropsyche betteni      | 09020604016037                     | 30.33                       |           |                              |                                  | 7.7                           |      |  |
| Rhyacophila              | 09020605019                        |                             | 3.67      | 2                            | PR                               |                               | 0.9  |  |
| Rhyacophila fuscula      | 09020605019060                     | 3.67                        |           |                              | PR                               | 0.9                           |      |  |
| Glossosoma               | 09020606020                        | 1.00                        | 1.00      | 0                            | SC                               | 0.3                           | 0.3  |  |
| Hydroptila               | 09020607026                        | 0.33                        | 0.33      | 6                            | Р                                | 0.1                           | 0.   |  |
| Brachycentrus            | 09020609043                        |                             | 2.00      | 0                            | CF                               |                               | 0.5  |  |
| Brachycentrus appalachia | 09020609043096                     | 2.00                        |           |                              |                                  | 0.5                           |      |  |
| Micrasema                | 09020609044                        | 0.33                        | 0.33      | 2                            | SH                               | 0.1                           | 0.1  |  |
| Limnephilidae            | 09020610                           |                             |           |                              |                                  |                               |      |  |
| Lepidostoma              | 09020611064                        | 8.00                        | 8.00      | 1                            | SH                               | 2.0                           | 2.0  |  |
| Oecetis                  | 09020618078                        | 3.33                        | 3.33      | 8                            | PR                               | 0.8                           | 0.8  |  |
| Nigronia                 | 09020701003                        |                             | 1.33      | 0                            | PR                               |                               | 0.3  |  |
| Nigronia serricornis     | 09020701003003                     | 1.33                        |           |                              |                                  | 0.3                           |      |  |



#### Maine Department of Environmental Protection Biological Monitoring Program Aquatic Life Taxonomic Inventory Report

| THE OF MAINE          |          | Aquatic Life Taxononine Inventory Report   |                                                |       |                                                        |              |                                            |      |  |  |
|-----------------------|----------|--------------------------------------------|------------------------------------------------|-------|--------------------------------------------------------|--------------|--------------------------------------------|------|--|--|
| Station Number: S-114 | 9 Water  | Waterbody: Beaverdam Stream - Station 1149 |                                                |       |                                                        | Town: Wesley |                                            |      |  |  |
| Log Number: 2764      | Subsa    | mple Factor: X1                            | Replicates: 3                                  |       | Calcu                                                  | 2019         |                                            |      |  |  |
| Taxon                 |          | Maine<br>Taxonomic<br>Code                 | Count<br>(Mean of Samplers)<br>Actual Adjusted |       | Hilsenhoff Functional<br>Biotic Feeding<br>Index Group |              | Relative<br>Abundance %<br>Actual Adjusted |      |  |  |
| Noctuidae             |          | 09020903                                   | 0.33                                           | 0.33  |                                                        |              | 0.1                                        | 0.1  |  |  |
| Tipula                |          | 09021001002                                | 0.67                                           | 0.67  | 4                                                      | SH           | 0.2                                        | 0.2  |  |  |
| Chironomidae          |          | 09021011                                   | 0.67                                           |       |                                                        |              | 0.2                                        |      |  |  |
| Cricotopus            |          | 09021011037                                |                                                | 0.34  | 7                                                      | SH           |                                            | 0.1  |  |  |
| Cricotopus bicinctus  |          | 09021011037057                             | 0.33                                           |       |                                                        |              | 0.1                                        |      |  |  |
| Parametriocnemus      |          | 09021011053                                | 0.33                                           | 0.34  | 5                                                      | CG           | 0.1                                        | 0.1  |  |  |
| Tvetenia              |          | 09021011065                                |                                                | 40.56 | 5                                                      | CG           |                                            | 10.2 |  |  |
| Tvetenia paucunca     |          | 09021011065114                             | 40.00                                          |       |                                                        |              | 10.1                                       |      |  |  |
| Micropsectra          |          | 09021011070                                | 3.67                                           | 3.72  | 7                                                      | CG           | 0.9                                        | 0.9  |  |  |
| Rheotanytarsus        |          | 09021011072                                |                                                | 0.68  | 6                                                      | CF           |                                            | 0.2  |  |  |
| Rheotanytarsus exigu  | us group | 09021011072127                             | 0.33                                           |       |                                                        | CF           | 0.1                                        |      |  |  |
| Rheotanytarsus pellue | cidus    | 09021011072128                             | 0.33                                           |       |                                                        | CF           | 0.1                                        |      |  |  |
| Tanytarsus            |          | 09021011076                                | 1.33                                           | 1.35  | 6                                                      | CF           | 0.3                                        | 0.3  |  |  |
| Polypedilum           |          | 09021011102                                |                                                | 1.35  | 6                                                      | SH           |                                            | 0.3  |  |  |
| Polypedilum aviceps   |          | 09021011102181                             | 1.33                                           |       |                                                        |              | 0.3                                        |      |  |  |
| Stenochironomus       |          | 09021011105                                | 0.33                                           | 0.34  | 5                                                      | CG           | 0.1                                        | 0.1  |  |  |
| Simulium              |          | 09021012047                                | 46.00                                          | 46.00 | 4                                                      | CF           | 11.6                                       | 11.6 |  |  |
| Hemerodromia          |          | 09021016057                                | 2.00                                           | 2.00  | 3                                                      | PR           | 0.5                                        | 0.5  |  |  |
| Roederiodes           |          | 09021016058                                | 8.00                                           | 8.00  | 3                                                      | PR           | 2.0                                        | 2.0  |  |  |
| Promoresia            |          | 09021113069                                |                                                | 1.00  |                                                        |              |                                            | 0.3  |  |  |
| Promoresia tardella   |          | 09021113069052                             | 1.00                                           |       |                                                        |              | 0.3                                        |      |  |  |
| Stenelmis             |          | 09021113070                                | 0.67                                           | 0.67  | 5                                                      | SC           | 0.2                                        | 0.2  |  |  |