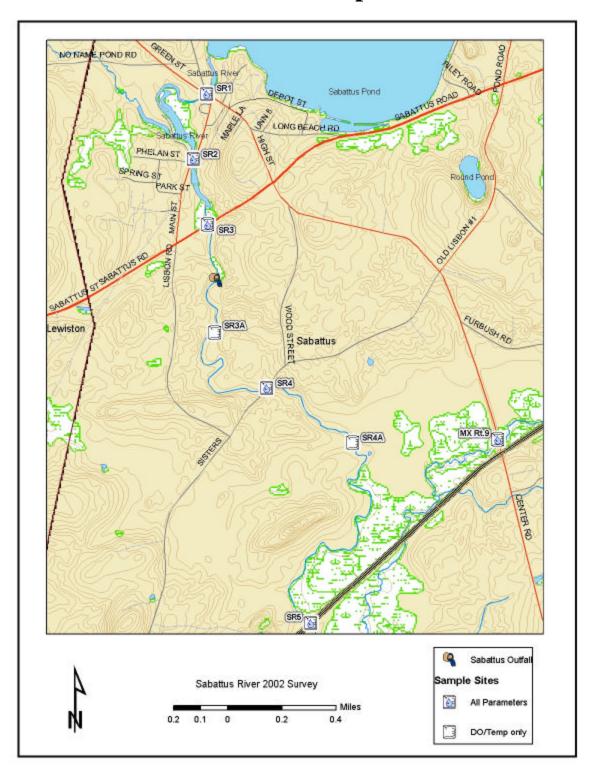
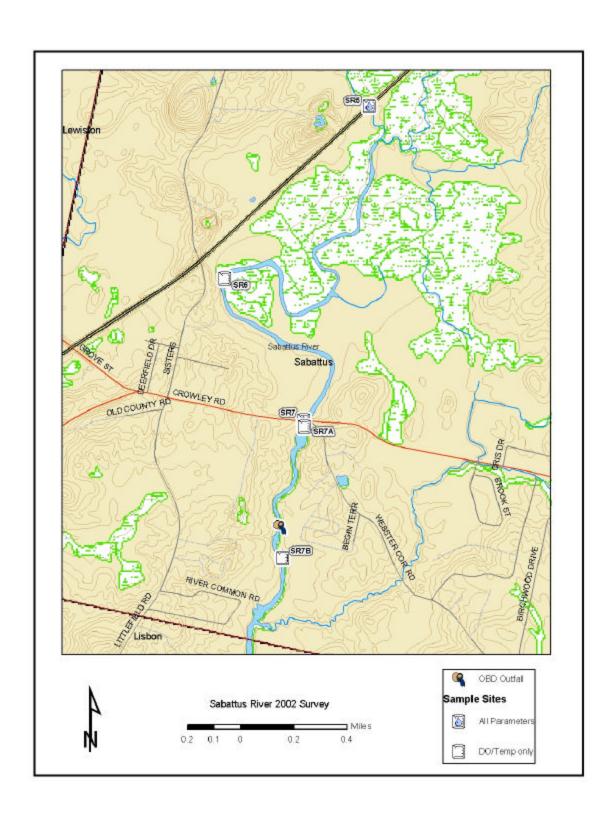
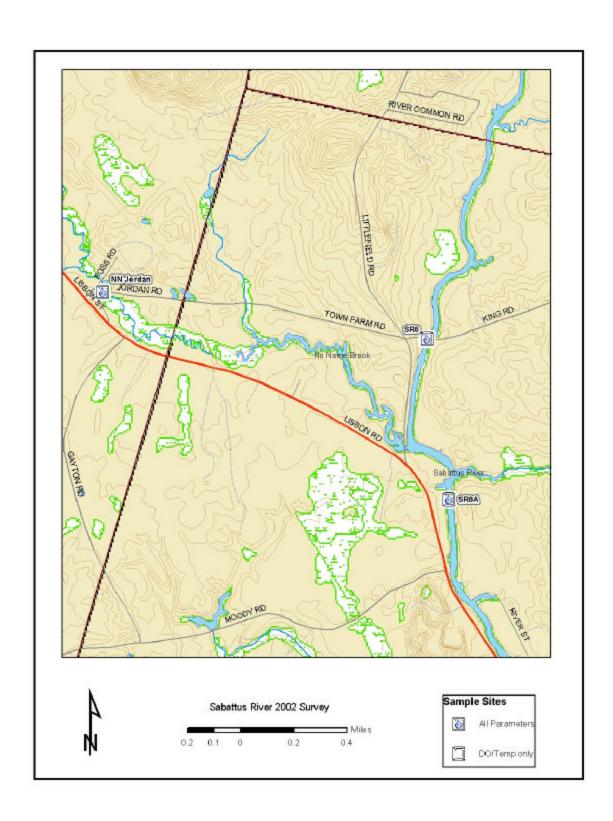
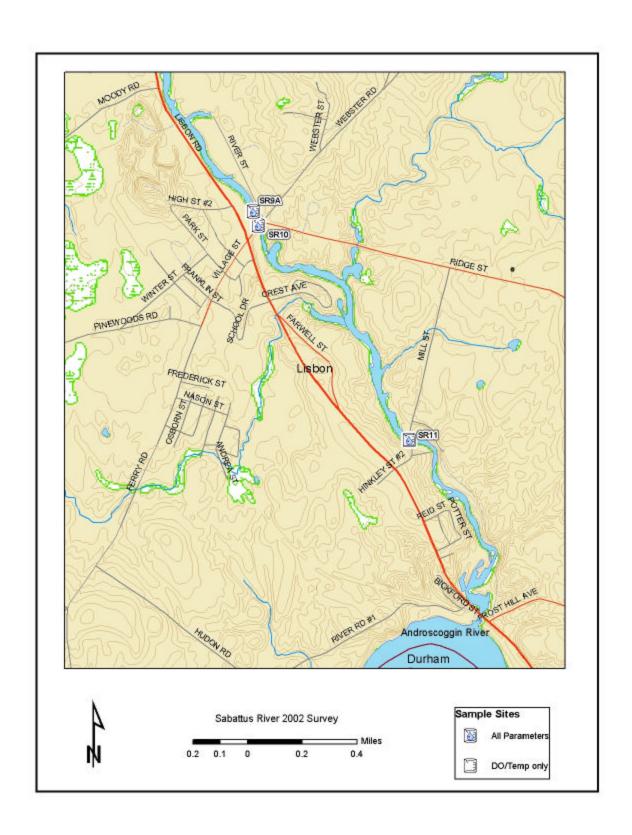
Sabattus River Data Report August 2002 Survey April 2003 DEPLW0591




Prepared by David Miller, P.E. Bureau of Land and Water Quality Division of Environmental Assessment


Table of Contents


LOCATION MAPS	1
INTRODUCTION	5
HYDROLOGIC DATA	5
AMBIENT CHEMICAL DATA	
EFFLUENT DATA	
QUALITY CONTROL	
DISCUSSION	12
APPENDIX	
<u>Tables</u>	
TABLE 1 FLOW MEASUREMENTS	6
TABLE 2 2002 STAGE MEASUREMENTS	6
TABLE 3 2002 TRANSECT DATA	
<u>Figures</u>	
FIGURE 1 SABATTUS RIVER DO	7
FIGURE 2 SABATTUS RIVER SONDE DO	
FIGURE 3 SABATTUS RIVER SONDE TEMPERATURE	8
FIGURE 4 SABATTUS RIVER AVERAGE P CONC	
FIGURE 5 SABATTUS RIVER AVERAGE CHL-A	
FIGURE 6 SABATTUS RIVER AVERAGE BOD	
FIGURE 7 SABATTUS DISCHARGE VS. PERMIT	

Location Maps

Introduction

The Sabattus River (class C to below Lisbon) forms the outlet of Sabattus Pond and extends approximately 10 miles to the Androscoggin River. The town of Sabattus (0.12 MGD) discharges treated wastewater to the Sabattus River approximately 0.9 mile below the pond. A small residential discharge (MEU501622, 0.02 MGD) is located about 0.4 mile below Crowley Road bridge. Maine Electronics (0.079 MGD) discharges treated groundwater to the Sabattus River in Lisbon. River flow is regulated at the outlet dam (minimum flow 2.5 cfs).

Sabattus Pond experiences algae blooms each year and is on the state's 303d list for non-attainment of water quality standards requiring a TMDL (total maximum daily load analysis). A number of dams are located on the river. Water withdrawals for irrigation reduce river flows. All these factors may contribute to dissolved oxygen (DO) problems. During 1994, non-attainment of DO standards was measured at two sites on the river. The Sabattus River is also on the state's 303d TMDL list for non-attainment of water quality standards (listed for DO and nutrient loading). A water quality study was initiated during the summer of 2000 with the completion of a three day intensive survey (see <u>Sabattus River Data Report August 2000 Survey</u>, November 2001, #DEPLW0446).

A second survey was made during August 2002. The details of this study are outlined in the workplan (<u>Sabattus River Work Plan</u>, June 2002). Other DEP personnel also performed Macroinvertebrate sampling during 2002. The results from these surveys should provide sufficient data for developing a water quality model and TMDL for the Sabattus River.

This report presents the results of the 2002 study. As during 2000, the study focused on the segment between Sabattus Pond and Lisbon Center, a distance of approximately 9 miles. The drainage area of the Sabattus River at the outlet of Sabattus Pond is 33.8 mi.² and at the confluence of the Androscoggin River is 73.8 mi.². Most of this river segment is classified C, requiring among other standards, a minimum DO concentration of 5 ppm or 60% saturation, whichever is greater and a monthly average of 6.5 ppm. Below the Lisbon urban area (Mill Street) the river is classified B, requiring a minimum DO concentration of 7 ppm or 75% saturation.

Hydrologic Data

As part of the data collection for developing a water quality model it is necessary to collect sufficient physical data for representation of the river hydrology. These data include sufficient river flow measurements during each survey to establish a flow balance for the study segment and transect measurements (widths and depths) at representative sites within the study segment. The following tables 1 and 2 present the flow and stage data. Table 3 presents the results from the 2002 transect measurements.

Table 1 Flow Measurements

			F	ow, cfs (stage, ft.)		
	DA, mi. ²	8/19/02	8/20/02	8/21/02	8/22/02	8/23/02	8/28/02
Sabattus River, Rt. 126 bridge	34.9	5.95 (5.72)	(5.73)	(5.73)	-	(5.72)	(5.77)
Barker Brook, Ridge St.	3.6	0*	-	-	-	-	-
Noname Brook, Jordan Rd.	11.8	0.46	-	-	-	-	-
Sabattus River, above Webster Rd.	67.1	7.98	-	-	-	-	-
Sabattus Treatment Plant (MGD)	-	0.058	0.058	0.052	0.057	0.064	0.065

^{*}beaver dam, backwatered, no flow

Table 2 2002 Stage Measurements

		0
	stage, ft.	
	08/20/02	Datum
above falls at bridge	2.88	(left pier, from seam)
King Rd. bridge	10.92	(center of bridge, top of upstream railing)
Lisbon dam impoundment	5.16	(from top corner, see transect field notes)
Mill St.	11.14	(top of concrete rail, see field sheet)

Table 3 2002 Transect Data

Tubic o 2002 Transcot Butta										
		Ave.								
Transect	Width	Depth, ft.	Area, ft.2	Flow, cfs	Vel, fps					
Т6	32.0	1.69	54.0	5.96	0.11					
T7	37.3	1.68	62.4	6.00	0.10					
Т8	34.0	0.60	20.3	6.03	0.30					
Т9	35.0	1.03	36.0	6.04	0.17					
T10	27.0	1.15	30.9	6.07	0.20					
T11	34.4	1.14	39.2	6.07	0.15					
T12	34.4	1.16	40.0	6.09	0.15					
T13	23.8	1.38	32.7	6.13	0.19					
T14	34.5	1.28	44.1	6.18	0.14					
T15	34.3	1.47	50.2	6.22	0.12					
T16	35.0	0.89	31.2	6.25	0.20					
T17	39.7	3.60	142.8	6.57	0.05					

Ambient Chemical Data

The ambient chemical data collected during the August 2002 survey included dissolved oxygen (DO), temperature, total phosphorous (TP), orthophosphorous (PO4), total kjeldhal nitrogen (TKN), ammonia nitrogen (NH3), nitrite plus nitrate nitrogen (NOx), chlorophyll a (chl-a), ultimate carbonaceous biochemical oxygen demand (CBODu) and ultimate nitrogenous biochemical oxygen demand (NBODu). pH and E. coli bacteria were also sampled. These parameters were sampled/measured during the early morning, except for three afternoon samples for TP and chl-a (to investigate any diurnal effects). These data

are included on page A4 in the appendix. In addition, DO, temperature and pH were also measured during the afternoon to capture diurnal effects. These data are included in tables starting on page A1 in the appendix. In addition, a recording sonde was set out at station SR7B which measured and recorded DO and temperature continuously during the survey. The following charts summarize the DO measurements and sonde temperature measurements from the August 2002 survey.

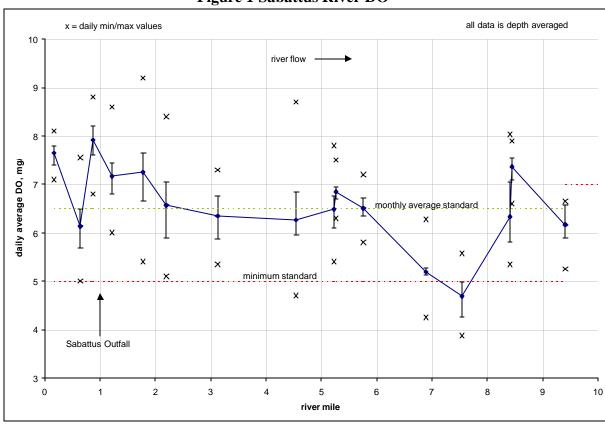
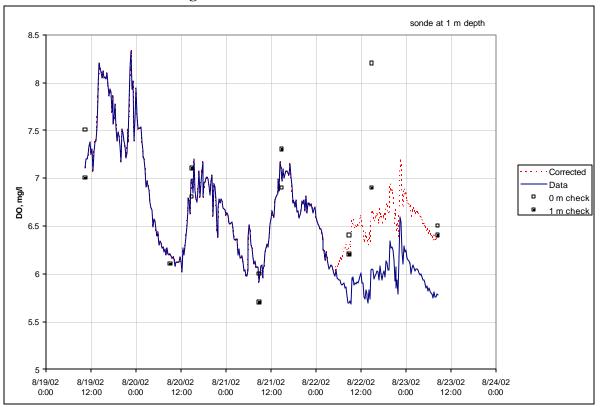
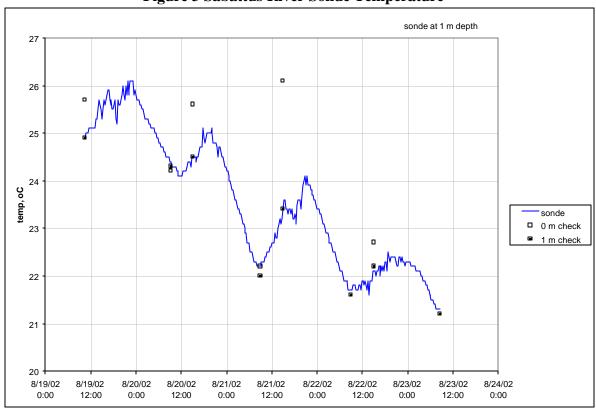
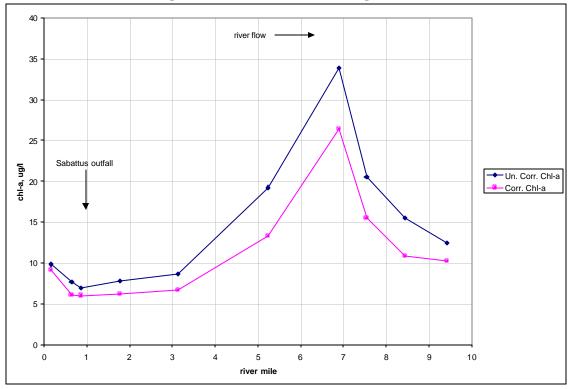




Figure 1 Sabattus River DO

Figure 2 Sabattus River Sonde DO


Figure 3 Sabattus River Sonde Temperature

Sabattus River Data Report August 2002 Survey DEPLW0591 April 2003 The following figures show plots of the phosphorous, chl-a, CBOD and NBOD data from the $2002\ survey$.

Figure 4 Sabattus River Average P Conc.

Sabattus Outfall

Sabattus Outfall

OOR of NBOD

Tiver flow

Tiver

Figure 6 Sabattus River Average BOD

Effluent Data

river mile

The Sabattus treatment plant effluent was also sampled during the study for total phosphorous (TP), orthophosphorous (PO4), total kjeldhal nitrogen (TKN), ammonia nitrogen (NH3), nitrite plus nitrate nitrogen (NOx), ultimate carbonaceous biochemical oxygen demand (CBODu) and ultimate nitrogenous biochemical oxygen demand (NBODu) and 5 day biochemical demand (BOD5). The samples were collected as 24-hour composites. These data are included on page A4 in the appendix.

In general the effluent BOD5 and flow were well below permit requirements (see following chart).

100% 80% 70% 60% % of Permit Limit 50% 40% 30% 0.056 MGD 20% 10% 4.2 lbs/day 4.2 lbs/day 0% Sabattus Flow Sabattus BOD5, daily max lbs. Sabattus BOD5, mon ave lbs.

Figure 7 Sabattus Discharge vs. Permit

The discharge from a mobile home park OBD (overboard discharge) was also sampled (see page A4 in the appendix).

Quality Control

Proper quality control should be followed to assure that all of the data that will be collected are good data. Dissolved oxygen meters were calibrated initially before sampling and checked periodically throughout the day. In addition, the meters (DO/temperature and pH) of adjacent sampling teams were cross checked both prior to sampling and after completion of sampling to assure the readings from one portion of the river to another are consistent and accurate. The dissolved oxygen readings should agree to within 0.3 ppm and temperatures to within 2° C. The results of the meter cross checks are shown on page A5 of the appendix.

The three-day surveys included ambient and effluent field duplicates. A comparison of the duplicate results is presented in the appendix. In general, the average duplicate variation was within 17% except for bacteria which averaged 102% (range of from 0% to 250%). DO, temperature, pH, NH3, NOx and TP duplicates averaged within 5%. Lab QAQC is available on request.

Discussion

Based upon the 2002 daily averaged data, the Sabattus River attained class C DO criteria at all sites except one and a small number of morning DO readings were non-attainment for class C. It should be noted that the site DO values for the deeper stations are depth averaged values which may include low, near bottom DO readings. In general DO standards are to be met at all times and locations (depths). Significant diurnal DO variation was measured (greater than 2 mg/l) at a number of sites, indicative of plant growth/nutrient enrichment effects. River flow during the survey was approximately two times greater than the minimum flow at the lake outlet or about half that of the 2000 survey. The flow and BOD5 loading from the Sabattus treatment plant were less than permit levels.

There was a significant increase in instream phosphorous below the Sabattus outfall. Increased chl-a concentrations were measured in the Lisbon impoundment. Instream BOD increased within the Lisbon impoundment, but part of this may be due to the high chl-a in the BOD sample.

The Sabattus River is targeted for completion of a TMDL (total maximum daily load analysis) by 2004.

Appendix

DO/TEMP/PH DATA	A1
SABATTUS RIVER 2002 CHEMICAL DATA	A4
METER CROSS CHECKS	A5
FIELD DUPLICATES	A7
SURVEY WEATHER CONDITIONS	A15
SABATTUS RIVER STAGE/DISCHARGE	A16
PHOTOGRAPHS	A17

DO/Temp/pH Data

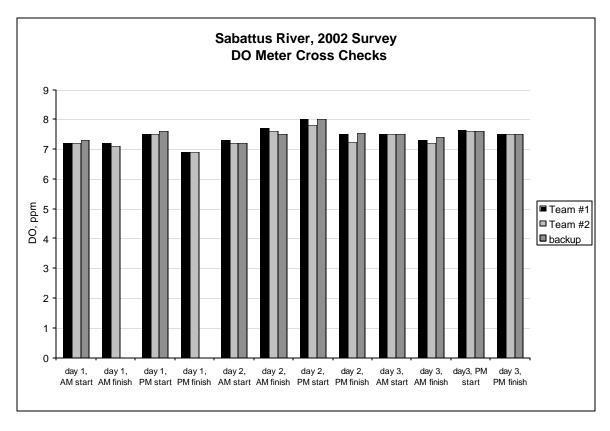
Date:	08/20/02						Į.
Station			рН		0	% Sat	
		Depth m			Temp °C		ļ
SR1	05:50	mid	7.5	7.1	24.6	85%	
	13:00	mid	7.7	7.7	25.5	94%	
	06:05	0	7.1	5.3	24.0	63%	
SR2		1	-	5.3	24.0	63%	
SR2	12.10	0	7.1	4.4	24.0	52%	
	13:10	-	7.1	6.4	24.2	76% 75%	
SR3	06:30	1 mid	7.1	6.3 6.8	24.0 24.5	82%	
313	13:25		7.5	8.4	25.1	102%	
SR3A	07:20	mid mid	7.1	6.0	23.1	71%	
SINSA	13:50	mid	7.4	7.6	25.0	92%	
SR4	07:40	mid	7.0	5.4	23.0	63%	
SK4	14:10	mid	7.2	7.9	24.8	95%	
SR4A	08:00	mid	7.0	5.1	22.8	59%	
OI\4A	14:25	mid	7.3	6.7	24.1	80%	
SR5	06:06	bucket	6.9	5.35	23.4	63%	
5115	16:00	bucket	7.2	6.4	24.4	77%	
SR6	8:20	mid	6.9	5.4	23.8	64%	
50	14:45	mid	7.3	6.6	24.6	79%	i
SR7	08:45	mid	7.0	6.2	24.3	74%	
0	14:58	mid	7.1	7.3	25.3	89%	
SR7A	08:55	mid	7.1	6.6	24.1	79%	
0	15:07	mid	7.3	6.8	25.4	83%	i
	09:13	0	7.0	6.1	24.2	73%	
SR7B		1	_	6.1	24.3	73%	bot 1.5
_	14:55	0	7.35	6.8	25.6	83%	000
		1	-	7.1	24.5	85%	
		1.5	-	5.9	24.1	70%	bot 1.7
	08:40	0	7.1	7.0	24.7	84%	
		1	-	6.8	24.7	82%	
SR8		2	-	0.2	23.1	2%	bot 2.9
	14:40	0	7.3	8.9	25.8	109%	
		1	-	7.6	24.7	91%	
		2	-	0.3	22.9	3%	bot 2.8
	08:13	0	7.0	6.8	24.8	82%	
		1	-	6.8	24.8	82%	
		1.5	-	6.0	24.7	72%	
		2	-	1.9	23.4	22%	
SR8A		3	-	0.0	20.4	0%	bot 3.5
	14:12	0	7.2	8.5	25.8	104%	
		1	-	7.3	24.8	88%	
		2	-	2.7	23.6	32%	
		3	-	0.1	20.4	1%	bot 3.7
	07:41	0	7.1	7.55	24.6	91%	
		1	-	7.5	24.7	90%	
SR9A	40 :-	2	<u> </u>	3.2	23.7	38%	bot 2.3
	13:43	0	7.3	8.0	25.4	98%	
		1	-	8.3	25.1	101%	
05:-	07 :-	2	-	7.8	24.6	94%	bot 2.5
SR10	07:15	mid	7.3	7.3	24.4	87%	
	13:30	mid	7.5	7.8	25.4	95%	ł
0044	06:44	0	7.1	6.5	24.6	78%	
SR11	40.47	1	-	6.5	24.6	78%	bot 1.3
	13:17	0	7.3	6.7	25.0	81%	
101	00.50	1	-	6.6	24.5	79%	ł
MX	06:50	mid	7.1	5.2	21.2	59%	l
Rt. 9	13:40	mid	7.2	4.9	21.5	56%	ł
NN	06:28	mid	6.9	3.2	22.4	37%	l
Jordan	15:36	0	7.1	5.0	24.7	60%	
Rd.	10:45	1	-	4.0	23.5	47%	l
SAB	10:45	mid		7.9	19.4	86%	Į

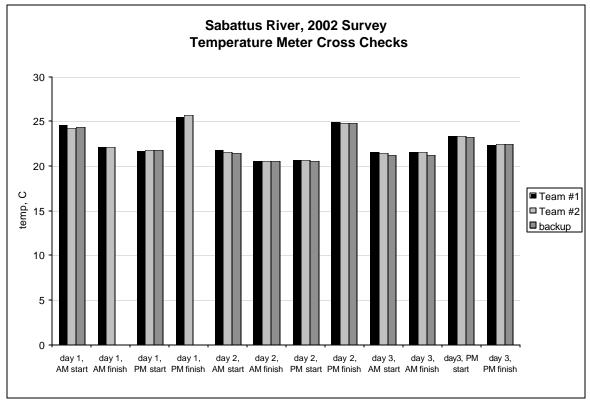
no flow at Barker Brook

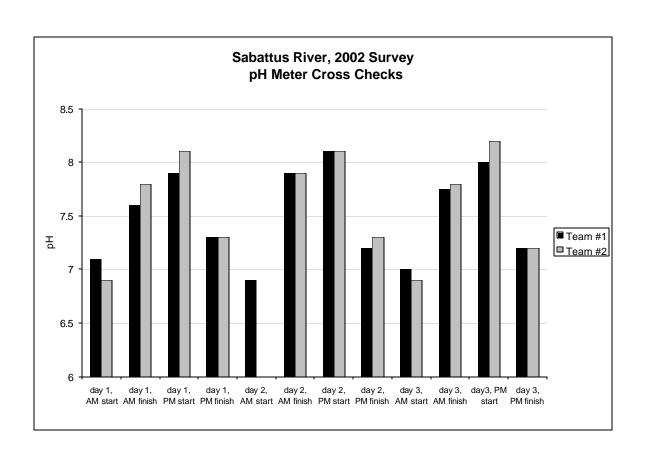
Date:	08/21/02						
Station		Depth m	рН	DO ma/l	Temp °C	% Sat	
SR1	05:45	mid	7.2	7.5	23.5	88%	
	13:00	mid	7.8	8.1	26.0	100%	
	06:00	0	6.9	5.5	22.1	63%	
SR2		1	-	5.3	22.2	61%	
	13:15	0	7.2	7.6	25.3	92%	
		1	-	6.5	22.7	75%	
SR3	06:15	mid	7.1	7.1	22.3	82%	
	13:30	mid	7.5	8.8	24.5	106%	
SR3A*	06:50	mid	7.2	6.1	21.3	69%	
OI (O/ (14:00	mid	7.1	8.4	24.5	101%	
SR4	07:10	mid	7.15	5.9	20.3	65%	
0114	14:20	mid	7.13	9.0	24.6	108%	
SR4A			7.1		20.0	62%	
SK4A	07:30	mid	7.1	5.6		94%	
CDF	14:35	mid		7.9	24.0		
SR5	05:54	mid	6.9	5.7	20.7	64%	
	16:03	mid	7.3	7.1	23.5	84%	
SR6	7:50	mid	6.9	4.7	22.1	54%	
	14:53	mid	7.3	7.2	25.4	88%	l
SR7	08:10	mid	7.0	5.4	22.6	62%	
	15:05	mid	7.2	7.8	24.2	93%	l
SR7A	08:20	mid	7.1	6.3	22.5	73%	
	15:10	mid	7.3	7.5	24.3	90%	
	08:56	0	7.1	6.0	22.2	69%	
		1	-	5.7	22.0	65%	
SR7B		1.5	-	5.7	22.0	65%	bot 1.7
	15:07	0	7.25	6.9	26.1	85%	
	.0.01	1		7.3	23.4	86%	
		1.5		7.5	22.6	82%	
	08:24		7.0				
	00.24	0	7.0	5.7	22.8	66%	
		1	-	5.6	22.9	65%	
		2	-	5.4	22.8	63%	
SR8		2.5	-	0.2	22.1	2%	
		3		0.3	18.7	3%	bot 3.3
	14:42	0	7.8	10.8	26.5	134%	
		1	-	8.3	23.6	98%	
		2	-	5.7	22.9	66%	
		3	-	0.3	18.3	3%	bot 3.2
	07:57	0	6.9	6.0	23.3	70%	
		1	-	5.9	23.4	69%	
		2	-	5.5	23.3	64%	
SR8A		3	-	0.2	20.5	2%	bot 3.5
	14:17	0	7.3	9.1	25.4	111%	
		1	-	7.3	23.7	86%	
		2	_	5.7	23.3	67%	
		3	_	0.2	20.4	2%	bot 3.5
	07:25	0	7.0	6.4	23.6	75%	1
	0	1	-	6.2	23.6	73%	
		2	١.	5.6	23.6	66%	
SR9A		2.5	1	3.2	23.2	37%	bot 2.7
OINEA	14:00	0	7.3	8.6	25.6	105%	JUL 2.1
	17.00	1	7.3	8.3	24.3	99%	
		2	1				hot 2 F
CD40	07:05		7.0	3.9	23.4	46%	bot 2.5
SR10	07:05	mid	7.2	7.0	23.3	82%	bot 0.5
	13:25	mid	7.6	7.9	25.6	97%	}
	06:44	0	7.0	5.8	23.5	68%	
		1	-	5.7	23.6	67%	
SR11		1.5	-	5.7	23.6	67%	
	13:15	0	7.4	6.8	25.1	82%	
		1	-	6.4	23.8	76%	
		1.5	-	5.8	23.6	68%	
MX	06:30	mid	7.1	4.7	19.2	51%	
Rt. 9	13:45	mid	7.2	6.7	20.5	74%	
NN	06:24	0	6.9	2.6	20.0	29%	
Jordan		1	-	2.6	20.0	29%	bot 1
Rd.	15:44	0	7.1	4.6	23.8	54%	
		1	'-'	4.3	23.6	51%	bot 1.1
SAB	09:25	mid		8.3	18.8	89%	30. 1.1
	site 100 v				, , , , ,	JU /U	,

*revised site 100 yds downstream no flow at Barker Brook

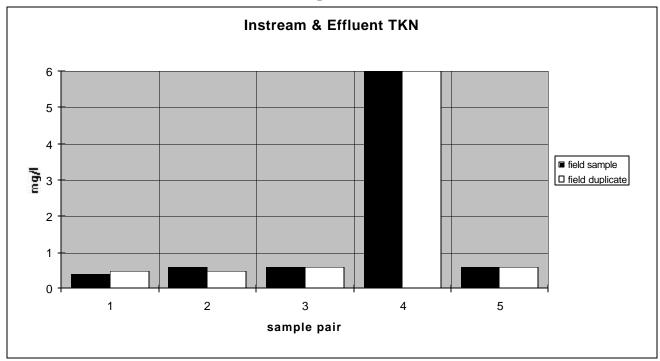
Date:	08/22/02						[
Station		Depth m	рН	DO mg/l	Temp °C	% Sat	
SR1	08:20	mid	7.3	7.4	23.5	87%	
	12:55	mid	7.5	8.1	24.1	96%	
	08:05	0	6.9	5.5	21.5	62%	ł
SR2		1	-	5.4	21.5	61%	
	13:05	0	7.3	7.9	23.1	92%	ł
		1	-	7.2	22.5	83%	ł
SR3	07:55	mid	7.3	7.6	22.1	87%	ł
	13:15	mid	7.4	8.8	22.4	101%	ł
SR3A*	07:20	mid	7.0	6.3	20.9	71%	ł
	13:40	mid	7.2	8.6	22.7	100%	ł
SR4	06:55	mid	7.1	6.1	19.7	67%	ł
	14:00	mid	7.3	9.2	22.4	106%	ł
SR4A	06:35	mid	7.0	5.7	19.6	62%	Ĭ
	14:20	mid	7.4	8.4	21.6	95%	ł
SR5	05:57	bucket	7.0	6.2	19.7	68%	ł
	15:57	bucket	7.3	7.3	21.2	82%	ł
SR6	6:15	mid	6.9	5.0	21.5	57%	ł
Oito	14:40	mid	7.5	8.7	22.4	100%	ł
SR7	06:03	mid	7.0	5.6	22.1	64%	ł
3117	14:50	mid	7.1	6.6	22.1	76%	ĺ
SR7A	05:50	mid	7.0	6.6	22.0	75%	l
SK/A						84%	
	15:00	mid	7.2	7.3	22.5		ŀ
	09:05	0	7.0	6.4	21.6	73%	ł
0070		1	-	6.2	21.6	70%	
SR7B	45.00	1.5	-	6.1	21.6	69%	bot 1.8
	15:02	0	?	8.2	22.7	95%	ł
		1	-	6.9	22.2	79%	ł
		1.5		6.5	21.8	74%	ł
	08:45	0	6.9	6.1	22.0	70%	ł
		1	-	6.0	22.1	69%	ł
		2	-	5.8	22.0	66%	ł
SR8		2.5	-	5.8	22.0	66%	ł
		3	-	0.2	18.4	2%	bot 3.1
	14:45	0	7.2	8.7	23.2	102%	ł
		1	-	8.2	22.7	95%	ł
		2	-	6.2	22.1	71%	ł
		3	-	0.3	19.7	3%	bot 3.2
	07:55	0	6.85	5.75	22.6	67%	ł
		1	-	5.9	22.6	68%	ł
		2	-	5.95	22.6	69%	ł
SR8A		3	-	0.2	20.8	2%	bot 3.5
	14:17	0	7.2	7.5	23.3	88%	ł
		1	-	7.2	23.0	84%	ł
		2	-	5.6	22.6	65%	ł
		3	-	0.4	21.1	4%	bot 3.5
	07:22	0	6.9	5.55	22.2	64%	ł
		1	-	5.5	22.3	63%	ł
		2	-	5.4	22.2	62%	l
SR9A		2.5	-	5.2	22.2	60%	bot 2.7
	13:41	0	7.1	7.1	23.0	83%	ł
		1	-	5.9	22.5	68%	ł
		2	_	5.6	22.4	65%	bot 2.5
SR10	05:55	mid	7.1	6.6	21.8	75%	
	13:26	mid	7.4	7.6	22.7	88%	ł
	06:35	0	7.0	5.3	22.1	61%	Î
		1	-	5.25	22.2	60%	ĺ
SR11		1.5	-	5.2	22.2	60%	bot 1.8
0.111	13:11	0	7.4	7.0	23.1	82%	30. 1.0
	10.11	1		6.7	22.7	78%	
		1.5		5.95	22.4	69%	l
MX	07:37	mid	7.0	4.9	18.3	52%	ł
Rt. 9	13:28	mid	7.2	6.2	19.1	67%	l
NN	06:19	0		3.0	18.9	32%	l
Jordan	00.19	1	6.9	2.95	19.0	32%	ĺ
Rd.	15:35	0	7.05	4.6	21.0	52%	
i vu.	10.00		7.03				
		1	-				
SAB	09:41	1 -	-	4.4 8.2	20.9 18.2	49% 87%	bot 1.2

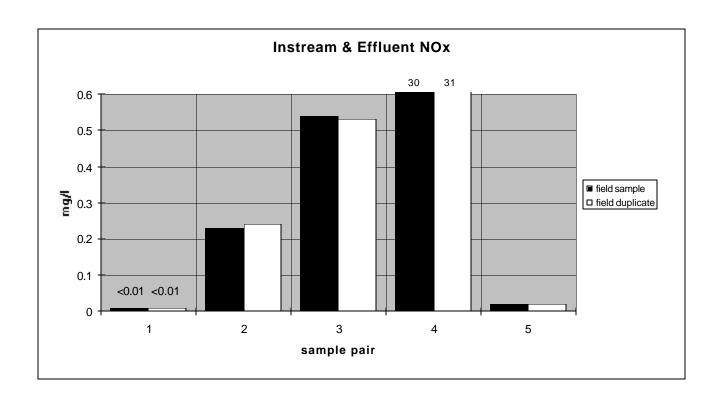

*revised site 100 yds downstream no flow at Barker Brook

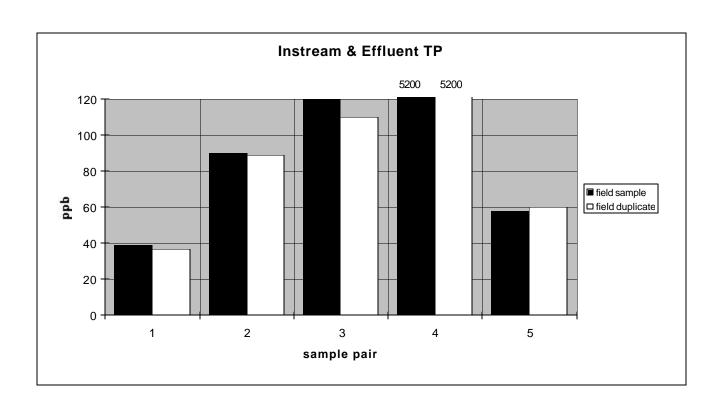

Sabattus River 2002 Chemical Data

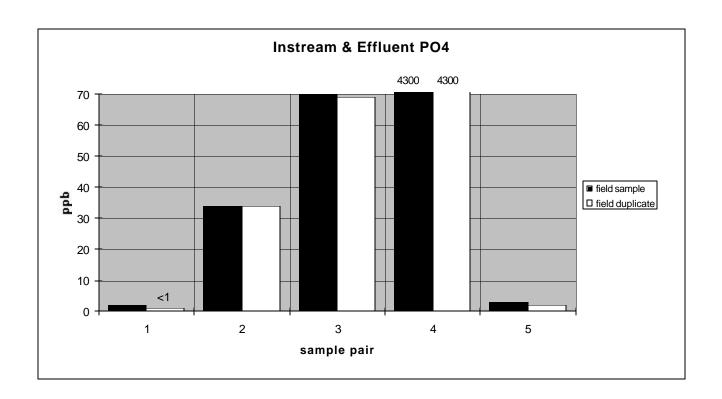

Sabattus Riv	er, Aug 200	2 Survey										DEP	STP				
		,			TKN	NH3	NOx	TP	PO4	Chl-a	, ppb	BOD5	BOD5	TBOD	NBOD	CBOD	final
Station	Date	Time	Notes	E Coli	mg/l	mg/l	mg/l	ppb	ppb	uncor	cor	mg/l	mg/l	mg/l	mg/l	mg/l	NOx
	08/20/02	5:50	-	150	0.4	0.02	0.02	39	5	9.1	9.1	-	-	5.0	0.9	4.1	0.22
SR1	08/21/02	5:45	-	10	0.4	0.02	0.01	30	5	8.7*	8.0	-	-	4.9	0.9	4.0	0.22
	08/22/02	8:20	-	10	0.4	0.02	0.01	33	6	11.7	10.4	-	-	5.3	1.0	4.3	0.23
	08/20/02	6:05	-	-	-	-	-	42	-	8.6*	6.9	-	-	-	-	-	-
SR2	08/21/02	6:00	-	-	-	-	-	37	-	6.6*	5.1	-	-	-	-	-	-
	08/21/02	13:15	-	-	-	-	-	31	-	5.1*	5.9	-	-	-	-	-	-
	08/22/02	8:05	-	-	-	-	-	38	-	7.8*	6.4	-	-	-	-	-	-
	08/20/02	6:30	-	100	0.5	0.03	0.04	42	9	7.1*	6.1	-	-	4.7	0.8	3.9	0.23
SR3	08/21/02	6:15	-	30	0.5	0.02	0.04	38	8	6.9*	6.1	-	-	4.2	0.9	3.3	0.24
	08/22/02	7:55	-	30	0.5	0.02	0.03	37	8	7.0*	5.9	-	-	5.0	0.7	4.3	0.2
	08/20/02	7:40	-	360	0.6	0.05	0.44	100	60	8.8	7.5	-	-	4.9	0.9	4.0	0.65
	08/21/02	7:10	-	30	0.5	0.05	0.27	83	39	7.3*	5.3	-	-	4.8	1.1	3.7	0.53
SR4	08/21/02	14:20	-	-	-	-	-	-	63	5.5*	5.6	-	-	-	-	-	-
	08/22/02	6:55	-	20	0.6	0.04	0.54	120	70	7.4*	5.9	-	-	5.2	0.9	4.3	0.75
	dup	7:03	-	70	0.6	0.04	0.53	110	69	7.8*	6.9	-	-	5.2	0.8	4.4	0.71
	08/20/02	6:06	-	40	0.6	0.06	0.22	110	35	10.6	8.0	-	-	6.0	1.2	4.8	0.5
SR5	08/21/02	5:54	-	20	0.6	0.06	0.23	90	34	8.1*	6.4	-	-	4.9	1.0	3.9	0.46
	dup	6:00	-	10	0.5	0.06	0.24	89	34	8.9*	5.9	-	-	4.7	1.0	3.7	0.48
	08/22/02	5:57	-	20	0.6	0.05	0.32	92	37	7.4*	5.6	-	-	4.8	1.0	3.8	0.55
	08/20/02	8:45	-	20	0.6	0.04	0.09	84	9	20.8	14.7	-	-	9.5	2.1	7.4	0.57
SR7	08/21/02	8:10	-	<10	0.6	0.03	0.11	76	11	18.5	11.7	-	-	6.4	0.6	5.8	0.25
	08/22/02	6:03	-	<10	0.5	0.02	0.12	73	10	18.4	13.6	-	-	6.2	1.2	5.0	0.4
	08/20/02	8:40	core	20	0.9	<.01	0.01	84	4	37.7	31.2	-	-	10.9	2.2	8.7	0.52
SR8	08/21/02	8:24	core	<10	0.6	<.01	<.01	71	3	27.8	19.2	-	-	9.1	1.8	7.3	0.42
	08/21/02	14:42	core	-	-	-	-	68	-	32.2	27.0	-	-	-	-	-	-
	08/22/02	8:45	core	<10	0.7	<.01	<.01	73	2	36.0	28.8	-	-	9.9	1.6	8.3	0.38
	08/21/02	14:17	S=1.4m	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SR8A	08/22/02	7:55	-	<10	0.7	<.01	<.01	63	2	20.5	15.5	-	-	14.5	3.1	11.4	0.72
	08/22/02	14:17	S=1.5m	•	-	-	-	-	-	-	-	-	-	-	-	-	-
SR9A	08/21/02	14:00	S=1.5m	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	08/22/02	13:41	S=1.5m	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0540	08/20/02	7:15	-	40	0.6	0.02	0.01	46	2	13.0	10.4	-	-	7.3	1.2	6.2	0.28
SR10	08/21/02	7:05	-	20	0.6	0.01	0.01	56	4	16.6	10.7	-	-	10.0	1.9	8.1	0.45
	08/22/02	5:55	-	<10	0.5	0.01	0.01	57	3	16.8	11.5	-	-	9.2	1.9	7.3	0.45
0544	08/20/02	6:44	-	<10	0.4	<.01	<.01	39	2	9.8	8.3	-	-	5.9	1.0	4.9	0.23
SR11	dup	6:50	-	<10	0.5	<.01	<.01	37	<1	10.5	9.1	-	-	5.8	0.8	5.0	0.2
	08/21/02	6:44	-	<10	0.5	<.01	<.01	45	2	13.3	10.4	-	-	8.5	1.8	6.7	0.41
	08/22/02	6:35	-	10	0.5	<.01	<.01	45	2	14.3	12.0	-	-	12.3	2.1	10.2	0.49
NN (Jordan)	08/21/02	6:24	-	20	0.7	<.01	<.01	82	2	23.1	16.6	-	-	11.1	1.7	9.4	0.40
MX	08/20/02	6:50	-	300	0.6	0.05	0.02	58	3	9.8	8.5	-	-	10.4	2.0	8.4	0.48
Rt. 9	dup	7:00		620	0.6 3**	0.05	0.02	60	2	12.1	10.4	10.4	-	8.4	1.6	6.8	0.39
CAD	08/20/02	-	comp.	-	6**	0.76	29	4900 5200	4600	-	-	12.4	-	29.9	0.0	29.9	28.4
SAB	08/21/02	-	comp.	-	6**	0.9	30 31	5200	4300 4300	-	-	>18 >18	9	68.9 41.8	7.5 0.0	61.4 41.8	31.7
	dup 08/22/02	-	comp.	-	6# 3#	0.89 0.22	29	4600	4200	-	-	4.0	_	26.1	0.0	26.1	26.7 24.9
OBD		11.00	comp.		1.7					-	-			_			
OBD	08/28/02	11:00	grab	-	1.7	0.94##	15	1600	1500	-	-	1.6	-	10.1	0.5	9.6104	15.1

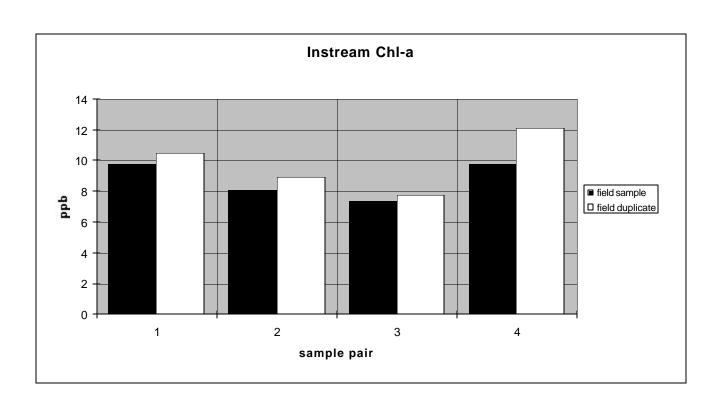
OBD 108/28/02 111:00 grap - 1...
**OD @ 664 nm <0.1 or > 1.0
**Possible interferences present
#Outside 28 day holding time, Possible interferences present
##NPDES required distillation is not performed for NH3 eff

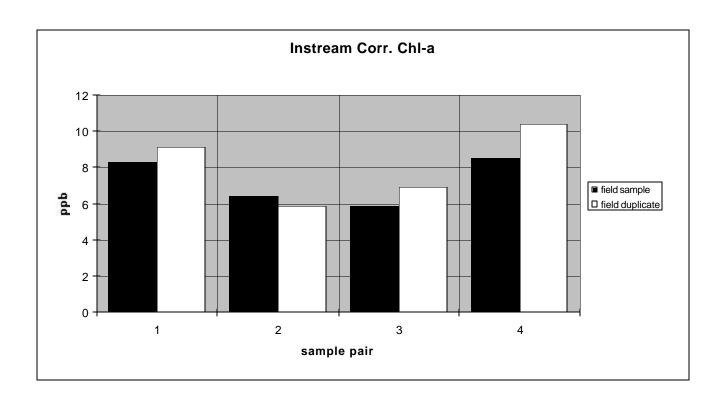

Meter Cross Checks

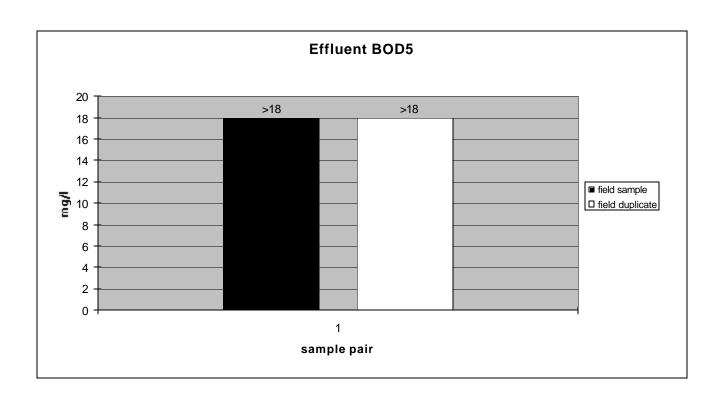


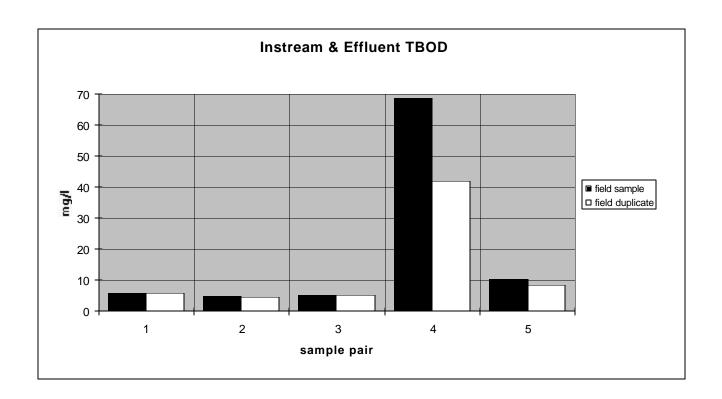


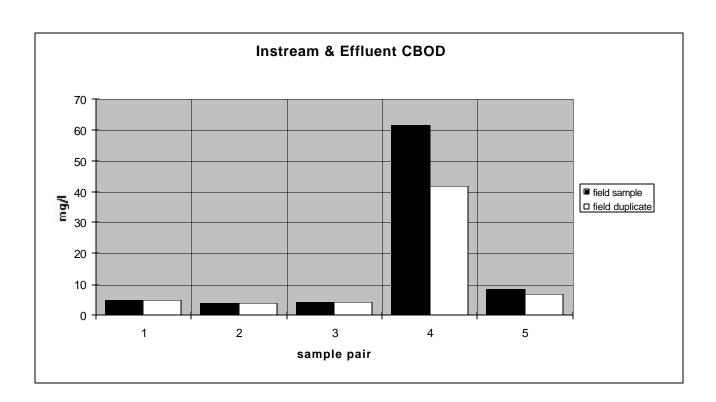

Field Duplicates

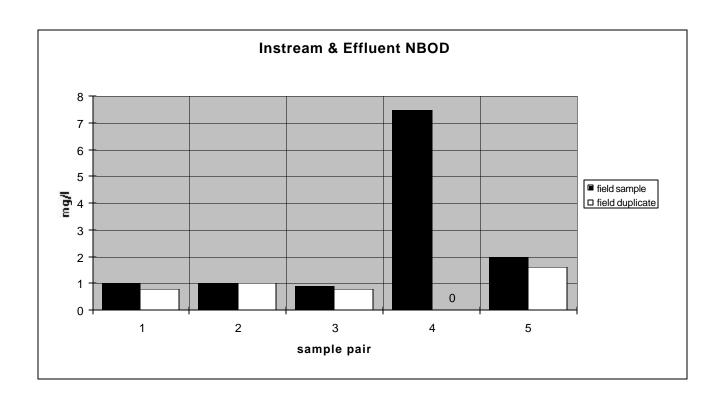


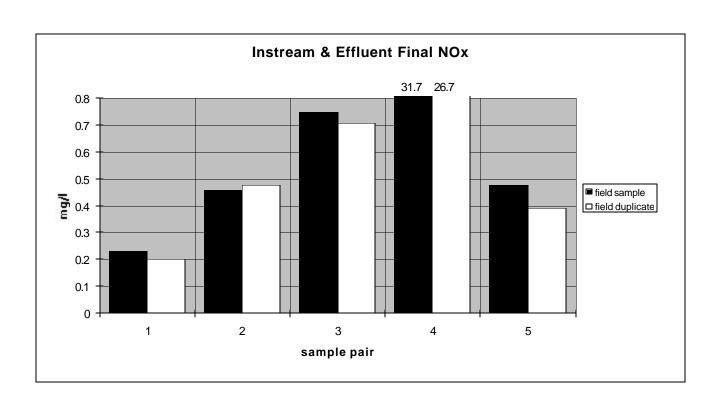


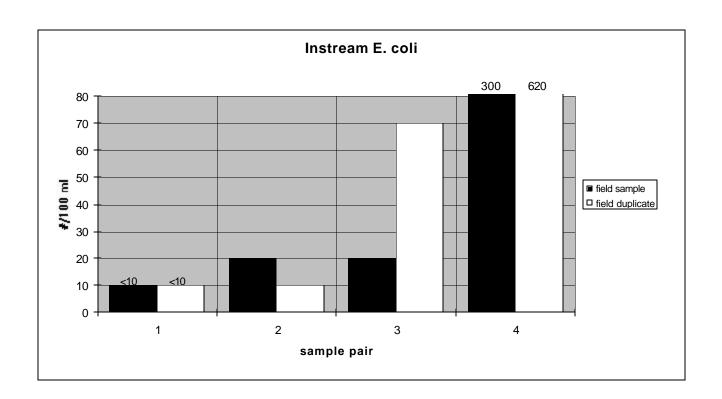


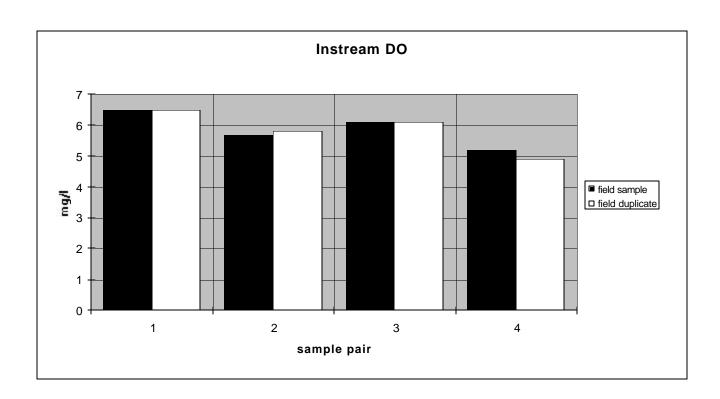


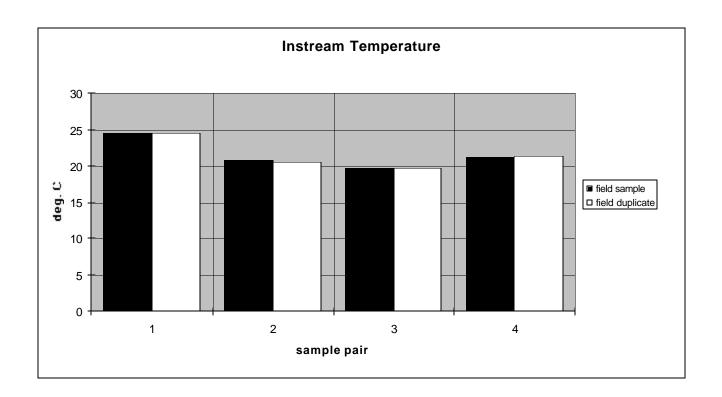


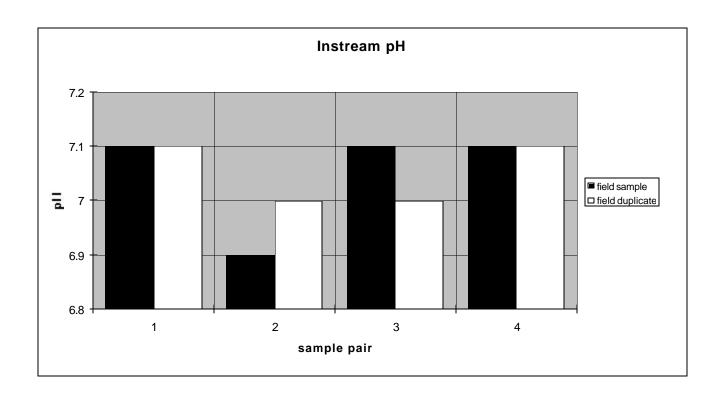




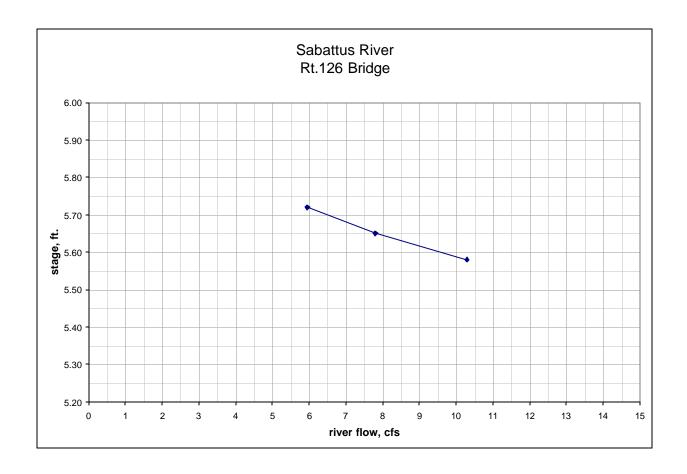








Survey Weather Conditions


Survey Notes

<u> </u>		
date	AM	PM
8/20/2002	light rain	sunny
8/21/2002	clear 50s	sunny 80
8/22/2002	clear 50s-75% sun	cloudy 70s

Weather Service for Lewiston

		temp, °F									
date	time	min	max	precip	time	temp, ⁰F	sky	DP, °F	RH, %	Wind, mph	Press, in.
8/19/2002	8:16	63	88	-	-	-	-	-	-	-	-
8/20/2002	-	-	-	-	17:00	81	fair	50	34	N14G18	30.00
8/21/2002	10:30	48	80	-	18:00	75	fair	48	38	S9	30.22
8/22/2002	8:18	46	79	-	-	-	-	-	-	-	-
8/23/2002	8:22	63	79	-	6:00	63	mocldy	48	59	NE9	30.01
8/23/2002	-	-	-	-	14:00	73	fair	45	35	N6	30.03

Sabattus River Stage/Discharge

Photographs

Rt. 126 bridge, site SR3

Old Lisbon Road Bridge, site SR4